Advertisement

Precision Agriculture

, Volume 12, Issue 2, pp 280–295 | Cite as

Design and validation of a wireless sensor network architecture for precision horticulture applications

  • Juan A. López
  • Antonio-Javier Garcia-Sanchez
  • F. Soto
  • A. Iborra
  • Felipe Garcia-Sanchez
  • Joan Garcia-Haro
Article

Abstract

This paper proposes a general wireless sensor network architecture for monitoring horticultural crops that are distributed among small plots scattered at distances of up to 10 km from one another. The technology used for the real implementation of the architecture is based on the B-MAC (Berkeley Medium Access Control) medium access protocol to assure a high degree of sensor node power autonomy. To resolve this issue, a series of specialized sensor nodes (Soil-Mote, Environmental-Mote and Water-Mote) have been developed along with a gateway to interconnect them with the farm central offices. Before starting device development, simulations were conducted to ensure that acceptable performance would be achieved with the selected technology in terms of node autonomy, achieved throughput and delays. To that end, it was necessary to implement the selected B-MAC protocol in the ns-2 (Network Simulator-2) simulation framework. The final system was deployed on a real crop to check and validate the simulation results against experimental results.

Keywords

Wireless sensor networks ns-2 simulator Precision horticulture 

Notes

Acknowledgements

The authors wish to thank the Ministry of Industry, Edosoft Factory S.L., projects RIMSI (FIT-330100-2006-173) and ESNA (ITEA 2006), Fundación Séneca of the Murcia Region (ID-08754/PI/08 and ID-08850/PI/08) and the CICYCT EXPLORE (TIN2009-08572), Ministry of Education and Science, Spain, for supporting this work. This research has been carried out within the framework of a regional programme of aids to groups of excellence in the Region of Murcia (Programa de Ayudas a Grupos de Excelencia de la Región de Murcia, de la Fundación Séneca, Agencia de Ciencia y Tecnología de la RM). The authors also gratefully acknowledge the supply of components by Texas Instruments and Maxim for our planned network deployment.

References

  1. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a survey. Computer Networks, 38, 393–422. doi: 10.1016/S1389-1286(01)00302-4.Google Scholar
  2. Ayday, C., & Safak, S. (2009). Application of wireless sensor networks with GIS on the soil moisture distribution mapping. In K. Peskova (Ed.), Proceedings of 16th international symposium GIS Ostrava 2009, Jan 25–28, 2009, Ostrava, Czech Republic, pp. 123–132.Google Scholar
  3. Baronti, P., Pillai, P., Chook, V. W., Chessa, S., Gotta, A., & Fu, Y. F. (2007). Wireless sensor networks: a survey on the state of the art and the 802.15.4 and ZigBee standards. Computer Communications, 30, 1655–1695. doi: 10.1016/j.comcom.2006.12.020.CrossRefGoogle Scholar
  4. Beckwith, R., Teibel, D., & Bowen, P. (2004). Report from the field: Results from an agricultural wireless sensor network. In Proceedings of the 29th conference on local computer networks (pp. 471–478). Tampa, USA: IEEE Computer Society Press.Google Scholar
  5. Camilli, A., Cugnasca, C. E., Saraiva, A. M., Hirakawa, A. R., & Corrêa, P. L. P. (2007). From wireless sensor to field mapping: Anatomy of an application for precision agriculture. Computers and Electronics in Agriculture, 58, 25–36. doi: 10.1016/j.compag.2007.01.019.CrossRefGoogle Scholar
  6. Chávez, J. L., Pierce, F. J., Elliott, T. V., & Evans, R. G. (2010). A remote irrigation monitoring and control system for continuous move systems. Part A: Description and development. Precision Agriculture, 11, 1–10. doi: 10.1007/s11119-009-9109-1.CrossRefGoogle Scholar
  7. Fall, K., & Varadhan, K. (2010). The ns manual. http://www.isi.edu/nsnam/ns/. Accessed 10 May 2010.
  8. IEEE (Institute of Electrical and Electronics Engineers). (2006). IEEE Standard for Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs). IEEE Standard 802.15.4-2006. New York: Institute of Electrical and Electronics Engineers.Google Scholar
  9. Katsalis, K., Xenakis, A., Kikiras, P., & Stamoulis, G. (2007). Topology optimization in wireless sensor networks for precision agriculture applications. In Proceedings of the 2007 international conference on sensor technologies and applications (pp. 526–530). Valencia, Spain: IEEE Computer Society Press.Google Scholar
  10. López, J. A., Soto, F., Sánchez, P., Iborra, A., Suardiaz, J., & Vera, J. A. (2009). Development of a sensor node for precision horticulture. Sensors, 9, 3240–3255. doi: 10.3390/s90503240.CrossRefGoogle Scholar
  11. Morais, R., Fernandes, M. A., Matos, S. G., Serodio, C., Ferreira, P. J. S. G., & Reis, M. J. C. S. (2008). A ZigBee multi-powered wireless acquisition device for remote sensing applications in precision viticulture. Computer and Electronics in Agriculture, 62, 94–106. doi: 10.1016/j.compag.2007.12.004.CrossRefGoogle Scholar
  12. Panchard, J., Rao, S., Sheshshayee, M., Papadimitratos, P., Kumar, S., & Hubaux, J. (2008). Wireless sensor networking for rain-fed farming decision support. In Proceedings of the second ACM SIGCOMM workshop on Networked systems for developing regions (pp. 31–36). Seattle, USA: Association for Computing Machinery, Inc.Google Scholar
  13. Pierce, F. J., & Elliott, T. V. (2008). Regional and on-farm wireless sensor networks for agricultural systems in Eastern Washington. Computers and Electronics in Agriculture, 61, 32–43. doi: 10.1016/j.compag.2007.05.007.CrossRefGoogle Scholar
  14. Polastre, J., Hill, J., & Culler, D. (2004). Versatile low power media access for wireless sensor networks. In Proceedings of the 2nd ACM international conference on Embedded Networked Sensor Systems (SenSys ‘04) (pp. 95–107). Baltimore, MD: Association for Computing Machinery, Inc.Google Scholar
  15. Ramachandran, I., Das, A. K., & Roy, S. (2007). Analysis of the contention access period of IEEE 802.15.4 MAC. ACM Transactions on Sensor Networks, 3, 4–29. doi: acm.org/10.1145/1210669.1210673.CrossRefGoogle Scholar
  16. SDI-12. (2009). SDI-12. A Serial-Digital Interface standard for microprocessor-based sensors version 1.3. http://www.sdi-12.org/. Accessed 10 May 2010.
  17. UM10204. (2007). I 2 C-Bus specification and user manual. http://www.nxp.com/documents/user_manual/UM10204.pdf. Accessed 10 May 2010.
  18. Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture a worldwide overview. Computers and Electronics in Agriculture, 36, 113–132. doi: 10.1016/S0168-1699(02)00096-0.CrossRefGoogle Scholar
  19. Zheng, J., & Lee, M. J. (2006). A comprehensive performance study of IEEE 802.15.4. In S. Phoha, T. F. La Porta, & C. Griffin (Eds.), Sensor network operations (pp. 218–237). USA: IEEE Press–Wiley Interscience.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Juan A. López
    • 1
  • Antonio-Javier Garcia-Sanchez
    • 1
  • F. Soto
    • 1
  • A. Iborra
    • 1
  • Felipe Garcia-Sanchez
    • 1
  • Joan Garcia-Haro
    • 1
  1. 1.Technical University of CartagenaCartagenaSpain

Personalised recommendations