Precision Agriculture

, Volume 10, Issue 1, pp 45–62 | Cite as

Combining chlorophyll meter readings and high spatial resolution remote sensing images for in-season site-specific nitrogen management of corn

  • Yuxin Miao
  • David J. Mulla
  • Gyles W. Randall
  • Jeffrey A. Vetsch
  • Roxana Vintila


The chlorophyll meter (CM) has been commonly used for in-season nitrogen (N) management of corn (Zea mays L.). Nevertheless, it has limited potential for site-specific N management in large fields due to difficulties in using it to generate N status maps. The objective of this study was to determine how well CM readings can be estimated using aerial hyper-spectral and simulated multi-spectral remote sensing images at different corn growth stages. Two field experiments were conducted in Minnesota, USA during 2005 involving different N application rates and timings on a corn-soybean [Glycine max (L.) Merr.] rotation field and a corn-corn rotation field. Four flights were made during the growing season using the AISA Eagle Hyper-spectral Imager and CM readings were collected at four or five different growth stages. The results indicated that single multi-spectral and hyper-spectral band or vegetation index could explain 64–86% and 73–88% of the variability in CM readings, respectively, except at growth stage V9 in the corn-soybean rotation field where no band or vegetation index could explain more than 37% of the variability in CM readings. Multiple regression analysis demonstrated that the combination of 2–4 broad-bands or 3–8 narrow-bands could explain 41–92% or 61–94% of the variability in CM readings across the two fields and different corn growth stages investigated. It was concluded that the combination of CM readings with high spatial resolution hyper-spectral or multi-spectral remote sensing images can overcome the limitations of using them individually, thus offering a practical solution to N deficiency detection and possibly in-season site-specific N management in large continuous corn fields or at later stages in corn-soybean rotation fields.


Precision nitrogen management Chlorophyll meter Hyper-spectral Multi-spectral Remote sensing images Corn-soybean rotation Continuous corn 



This is an “enhanced” version of the paper published as “Predicting chlorophyll meter readings with aerial hyper-spectral remote sensing for in-season site-specific nitrogen management of corn” in J. V. Stafford (Ed.) Precision Agriculture’07. Proceedings of the 6th European Conference on Precision Agriculture (6ECPA), 3–6 June 2007, Skiathos, Greece. Wageningen Academic Publishers, Wageningen, The Netherlands.


  1. Alchanatis, V., Schmilovitch, Z., & Meron, M. (2005). In-field assessment of single leaf nitrogen status by spectral reflectance measurements. Precision Agriculture, 6, 25–39. doi: 10.1007/s11119-005-0682-7.CrossRefGoogle Scholar
  2. Barnes, J. D. (1992). A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environmental and Experimental Botany, 2, 85–100. doi: 10.1016/0098-8472(92)90034-Y.CrossRefGoogle Scholar
  3. Basso, B., Ritchie, J. T., Pierce, F. J., Jones, J. W., & Braga, R. N. (2001). Spatial validation of crop models for precision agriculture. Agricultural Systems, 68, 97–112. doi: 10.1016/S0308-521X(00)00063-9.CrossRefGoogle Scholar
  4. Blackburn, G. A. (1998). Quantifying chlorophylls and carotenoids at leaf and canopy scales: An evaluation of some hyper-spectral approaches. Remote Sensing of Environment, 66(3), 273–285. doi: 10.1016/S0034-4257(98)00059-5.CrossRefGoogle Scholar
  5. Blackmer, T. M., Schepers, J. S., Varvel, G. E., & Walter-Shea, E. A. (1996). Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies. Agronomy Journal, 88, 1–5.Google Scholar
  6. Broge, N. H., & Leblanc, E. (2000). Comparing prediction power and stability of broadband and hyper-spectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76, 156–172. doi: 10.1016/S0034-4257(00)00197-8.CrossRefGoogle Scholar
  7. Buschman, C., & Nagel, E. (1993). In vivo spectroscopy and internal optics of leaves as a basis for remote sensing of vegetation. International Journal of Remote Sensing, 14, 711–722. doi: 10.1080/01431169308904370.CrossRefGoogle Scholar
  8. Chappelle, E. W., Kim, M. S., & McMurtrey, J. E., III. (1992). Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b and carotenoids in soybean leaves. Remote Sensing of Environment, 39(3), 239–247. doi: 10.1016/0034-4257(92)90089-3.CrossRefGoogle Scholar
  9. Chen, J. (1996). Evaluation of vegetation indices and modified simple ratio for boreal applications. Canadian Journal of Remote Sensing, 22, 229–242.Google Scholar
  10. Datt, B. (1998). Remote sensing of chlorophyll a, chlorophyll b, chlorophyll b and total carotenoid content in eucalyptus leaves. Remote Sensing of Environment, 66(2), 111–121. doi: 10.1016/S0034-4257(98)00046-7.CrossRefGoogle Scholar
  11. Datt, B. (1999). Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves. International Journal of Remote Sensing, 20(14), 2741–2759. doi: 10.1080/014311699211778.CrossRefGoogle Scholar
  12. Daughtry, C. S. T., Walthall, C. L., Kim, M. S., de Colstoun, E. B., & McMurtrey, J. E., III. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74, 229–239. doi: 10.1016/S0034-4257(00)00113-9.CrossRefGoogle Scholar
  13. Gitelson, A., Kaufman, Y., & Merzlyak, M. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58, 289–298. doi: 10.1016/S0034-4257(96)00072-7.CrossRefGoogle Scholar
  14. Goel, P. K., Prasher, S. O., Landry, J. A., Patel, R. M., Viau, A. A., & Miller, J. R. (2003). Estimation of crop biophysical parameters through airborne and field hyper-spectral remote sensing. Transactions of the ASAE, 46(4), 1235–1246.Google Scholar
  15. Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81, 416–426. doi: 10.1016/S0034-4257(02)00018-4.CrossRefGoogle Scholar
  16. Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyper-spectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90, 337–352. doi: 10.1016/j.rse.2003.12.013.CrossRefGoogle Scholar
  17. Han, S., Hendrickson, L. L., & Ni, B. (2002). Comparison of satellite and aerial imagery for detecting leaf chlorophyll content in corn. Transactions of the ASAE, 45(4), 1229–1236.Google Scholar
  18. Hawkins, J. A., Sawyer, J. E., Barker, D. W., & Lundvall, J. P. (2007). Using relative chlorophyll meter values to determine nitrogen application rates for corn. Agronomy Journal, 99, 1034–1040. doi: 10.2134/agronj2006.0309.CrossRefGoogle Scholar
  19. Huete, A. (1988). A soil adjusted vegetation index (SAVI). Remote Sensing of Environment, 25, 295–309. doi: 10.1016/0034-4257(88)90106-X.CrossRefGoogle Scholar
  20. Jordan, C. F. (1969). Derivation of leaf area index from quality of light on the forest floor. Ecology, 50, 663–666. doi: 10.2307/1936256.CrossRefGoogle Scholar
  21. Lawrence, R. L., & Ripple, W. J. (1998). Comparisons among vegetation indices and bandwise regression in a highly distributed, heterogeneous landscape: Mount StHelens, Washington. Remote Sensing of Environment, 65, 91–102. doi: 10.1016/S0034-4257(97)00171-5.CrossRefGoogle Scholar
  22. Lichtenthaler, H. K., Lang, M., Sowinska, M., Heisel, F., & Mieh, J. A. (1996). Detection of vegetation stress via a new high resolution fluorescence imaging system. Journal of Plant Physiology, 148, 599–612.Google Scholar
  23. Mamo, M., Malzer, G. L., Mulla, D. J., Huggins, D. R., & Strock, J. (2003). Spatial and temporal variation in economically optimum nitrogen rate for corn. Agronomy Journal, 95, 958–964.Google Scholar
  24. McMurtrey, J. E., I. I. I., Chappelle, E. W., Kim, M. S., Meisinger, J. J., & Corp, L. A. (1994). Distinguish nitrogen fertilization levels in field corns (Zea mays L.) with actively induced fluorescence and passive reflectance measurements. Remote Sensing of Environment, 47, 36–44. doi: 10.1016/0034-4257(94)90125-2.CrossRefGoogle Scholar
  25. Miao, Y., Mulla, D. J., Batchelor, W. D., Paz, J. O., Robert, P. C., & Wiebers, M. (2006). Evaluating management zone optimal nitrogen rates with a crop growth model. Agronomy Journal, 98(3), 545–553. doi: 10.2134/agronj2005.0153.CrossRefGoogle Scholar
  26. Miao, Y., Mulla, D. J., Hernandez, J. A., Wiebers, M., & Robert, P. C. (2007). Potential impact of precision nitrogen management on corn yield, protein content, and test weight. Soil Science Society of America Journal, 71(5), 1490–1499. doi: 10.2136/sssaj2005.0396.CrossRefGoogle Scholar
  27. Nguyen, H. T., Kim, J. H., Nguyen, A. T., Nguyen, L. T., Shin, J. C., & Lee, B. W. (2006). Using canopy reflectance and partial least squares regression to calculate within-field statistical variation in crop growth and nitrogen status of rice. Precision Agriculture, 7(4), 249–264. doi: 10.1007/s11119-006-9010-0.CrossRefGoogle Scholar
  28. Peñuelas, J., Gamon, J. A., Fredeen, A. L., Merino, J., & Field, C. B. (1994). Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sensing of Environment, 48, 135–146. doi: 10.1016/0034-4257(94)90136-8.CrossRefGoogle Scholar
  29. Peñuelas, J., Filella, I., Lloret, P., Muñoz, F., & Vilajeliu, M. (1995). Reflectance assessment of mite effects on apple trees. International Journal of Remote Sensing, 16, 2727–2733.Google Scholar
  30. Piekielek, W. P., & Fox, R. H. (1992). Use of a chlorophyll meter to predict sidedress nitrogen requirements for maize. Agronomy Journal, 84(1), 59–65.Google Scholar
  31. Qi, J., Chehbouni, A., Huete, A. R., Keer, Y. H., & Sorooshian, S. (1994). A modified soil vegetation adjusted index. Remote Sensing of Environment, 48, 119–126. doi: 10.1016/0034-4257(94)90134-1.CrossRefGoogle Scholar
  32. Ritchie, S. W., Hanaway, J. J., & Benson, G. O. (1997). How a corn plant develops. Spec. Rep. 48. Iowa State Univ. Coop. Ext. Serv., Ames, IA. Also Available at.
  33. Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55, 95–107. doi: 10.1016/0034-4257(95)00186-7.CrossRefGoogle Scholar
  34. Rougean, J. L., & Breon, F. M. (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51, 375–384. doi: 10.1016/0034-4257(94)00114-3.CrossRefGoogle Scholar
  35. Rouse, J. W., Jr., Hass, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings Earth Resources Technology Satellite (ERTS) Symposium, 3rd., Greenbelt, MD, 10–14 Dec 1973 (Vol. I, pp. 309–317). Washington, DC: NASA SP-351, NASA.Google Scholar
  36. Schepers, J. S., Francis, D. D., Vigil, N., & Below, F. E. (1992). Comparison of corn leaf nitrogen concentration and chlorophyll meter readings. Communications in Soil Science and Plant Analysis, 23(7&8), 2173–2187.CrossRefGoogle Scholar
  37. Scharf, P. C., Brouder, S. M., & Hoeft, R. G. (2006). Chlorophyll meter readings can predict nitrogen need and yield response of corn in the North-Central USA. Agronomy Journal, 98(3), 655–665. doi: 10.2134/agronj2005.0070.CrossRefGoogle Scholar
  38. Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81(2–3), 337–354. doi: 10.1016/S0034-4257(02)00010-X.CrossRefGoogle Scholar
  39. Sims, J. T., Vasilas, B. L., Gartley, K. L., Milliken, B., & Green, V. (1995). Evaluation of soil and plant nitrogen tests for maize on manured soils of the Atlantic coastal plain. Agronomy Journal, 87, 213–222.Google Scholar
  40. Smith, R. C. G., Adams, J., Stephens, D. J., & Hick, P. T. (1995). Forecasting wheat yield in a Mediterranean-type environment from the NOAA satellite. Australian Journal of Agricultural Research, 46, 113–125. doi: 10.1071/AR9950113.CrossRefGoogle Scholar
  41. Sripada, R. P., Heiniger, R. W., White, J. G., & Meijer, A. D. (2006). Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agronomy Journal, 98, 968–977. doi: 10.2134/agronj2005.0200.CrossRefGoogle Scholar
  42. Sullivan, D. G., Shaw, J. N., Mask, P. L., Rickman, D., Luvall, J., & Wersinger, J. M. (2004). Evaluating corn nitrogen variability via remote-sensed data. Communications in Soil Science and Plant Analysis, 35(17&18), 2465–2483. doi: 10.1081/CSS-200030339.CrossRefGoogle Scholar
  43. Thenkabail, P. S., Smith, R. B., & Pauw, E. D. (2000). Hyper-spectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 71, 158–182. doi: 10.1016/S0034-4257(99)00067-X.CrossRefGoogle Scholar
  44. Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150. doi: 10.1016/0034-4257(79)90013-0.CrossRefGoogle Scholar
  45. Tumbo, S. D., Wagner, D. G., & Heinemann, P. H. (2002). Hyper-spectral-based neural network for predicting chlorophyll status in corn. Transactions of the ASAE, 45(3), 825–832.Google Scholar
  46. Varvel, G. E., Schepers, J. S., & Francis, D. D. (1997). Ability for in-season correlation of nitrogen deficiency in corn using chlorophyll meters. Soil Science Society of America Journal, 61(4), 1233–1239.CrossRefGoogle Scholar
  47. Varvel, G. E., Wilhelm, W. W., Shanahan, J. F., & Schepers, J. S. (2007). An algorithm for corn nitrogen recommendations using a chlorophyll meter based sufficiency index. Agronomy Journal, 99, 701–706. doi: 10.2134/agronj2006.0190.CrossRefGoogle Scholar
  48. Vogelmann, J. E., Rock, B. N., & Moss, D. M. (1993). Red edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing, 14, 1563–1575. doi: 10.1080/01431169308953986.CrossRefGoogle Scholar
  49. Walthall, C. L., Pachepsky, Y., Dulaney, W. P., Timlin, D. J., & Daughtry, C. S. T. (2007). Exploitation of spatial information in high resolution digital imagery to map leaf area index. Precision Agriculture, 8, 311–321. doi: 10.1007/s11119-007-9048-7.CrossRefGoogle Scholar
  50. Yang, C., Everitt, J. H., & Bradford, J. M. (2007). Airborne hyper-spectral imagery and linear spectral unmixing for mapping variation in crop yield. Precision Agriculture, 8, 279–296. doi: 10.1007/s11119-007-9045-x.CrossRefGoogle Scholar
  51. Yang, C., Everitt, J. H., Bradford, J. M., & Murden, D. (2004). Airborne hyper-spectral imagery and yield monitor data for mapping cotton yield variability. Precision Agriculture, 5, 445–461. doi: 10.1007/s11119-004-5319-8.CrossRefGoogle Scholar
  52. Ye, X., Sakai, K., Manago, M., Asada, S., & Sasao, A. (2007). Prediction of citrus yield from airborne hyper-spectral imagery. Precision Agriculture, 8, 111–125. doi: 10.1007/s11119-007-9032-2.CrossRefGoogle Scholar
  53. Zarco-Tejada, P. J., Miller, J. R., Mohammed, G. H., Noland, T. L., & Sampson, P. H. (2001). Scaling-up and model inversion methods with narrow-band optical indices for chlorophyll content estimation in closed forest canopies with hyper-spectral data. IEEE Transactions on Geoscience and Remote Sensing, 39(7), 1491–1507. doi: 10.1109/36.934080.CrossRefGoogle Scholar
  54. Zarco-Tejada, P. J., Miller, J. R., Morales, A., Berjón, A., & Agüera, J. (2004). Hyper-spectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sensing of Environment, 90, 463–476. doi: 10.1016/j.rse.2004.01.017.CrossRefGoogle Scholar
  55. Zhao, D., Reddy, K. R., Kakani, V. G., Read, J. J., & Carter, G. A. (2003). Corn (Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyper-spectral reflectance properties as affected by nitrogen supply. Plant and Soil, 257, 205–217. doi: 10.1023/A:1026233732507.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yuxin Miao
    • 1
  • David J. Mulla
    • 2
  • Gyles W. Randall
    • 3
  • Jeffrey A. Vetsch
    • 3
  • Roxana Vintila
    • 4
  1. 1.Agro-Informatics and Sustainable Development Group, College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
  2. 2.Precision Agriculture CenterUniversity of MinnesotaSt. PaulUSA
  3. 3.Southern Research and Outreach CenterUniversity of MinnesotaWasecaUSA
  4. 4.Research Institute of Soil Science and Agrochemistry (ICPA)BucharestRomania

Personalised recommendations