Precision Agriculture

, Volume 9, Issue 6, pp 407–417 | Cite as

Early pathogen detection under different water status and the assessment of spray application in vineyards through the use of thermal imagery

  • Manfred Stoll
  • Hans R. Schultz
  • Gerhard Baecker
  • Beate Berkelmann-Loehnertz


Remote detection using thermal imagery has potential for use in the pre-symptomatic diagnosis of abiotic stress or of early disease detection. The latter is an issue of great importance since late detection of fungus attacks or poor spray coverage are major factors contributing to weak disease control affecting fruit quality or reducing yield in grapes. In greenhouse experiments the effects on spatial and temporal variability of leaf temperature of grapevine (Vitis vinifera L. cv. Riesling) leaves inoculated with a fungal pathogen (Plasmopara viticola (Berk. & Curt. Ex de Bary) were studied in either well-irrigated or non-irrigated potted plants. Due to the high sensitivity of leaf temperature to the amount of water transpired, infra-red thermography can be used to monitor irregularities in temperature at an early stage of pathogen development. Evidence for characteristic thermal responses in grapevines was apparent well before visible symptoms appeared. Contrasting thermal effects due to the pathogen attack were found between measurements on well-irrigated and water-stressed plants. Furthermore, from a technical point of view, thermal imagery has the potential to assess the evenness of spray coverage within a canopy, hence optimizing pesticide application efficiency.


Biotic stress Thermal imagery Pre-symptomatic diagnosis Spray coverage 



The expert technical support of Dipl. Ing. Bernhard Gaubatz (GRC, Section Viticulture) and Winfried Schönbach (GRC, Section Phytomedicine) is gratefully acknowledged. We also thank Emma Gledhill-Schmitt (University of Applied Sciences, FH Wiesbaden) for improving the English in the manuscript.


  1. Allègre, M., Daire, X., Héloir, M. C., Trouvelot, S., Mercier, L., Adrian, M., et al. (2007). Stomatal deregulation in Plasmopara viticola-infected grapevine leaves. New Phytologist, 173, 832–840.PubMedCrossRefGoogle Scholar
  2. Buckley, T. N. (2005). The control of stomata by water balance. New Phytologist, 168(2), 275–292.PubMedCrossRefGoogle Scholar
  3. Chaerle, L., Hagenbeek, D., de Bruyne, E., Valcke, R., & Van Der Straeten, D. (2004). Thermal and chlorophyll-fluorescence imaging distinguish plant–pathogen interactions at an early stage. Plant Cell Physiology, 45, 887–896.PubMedCrossRefGoogle Scholar
  4. Chaerle, L., Leinonen, I., Jones, H. G., & Van Der Straeten, D. (2007). Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. Journal of Experimental Botany, 58(4), 773–784.PubMedCrossRefGoogle Scholar
  5. Cohen, Y., Perl, M., & Rotem, J. (1971). The effect of darkness and moisture on sporulation of Pseudoperonospora cubensis in cucumbers. Phytopathology, 61, 594–595.CrossRefGoogle Scholar
  6. Downton, W. J. S., Loveys, B. R., & Grant, W. J. R. (1988). Non-uniform stomatal closure induced by water stress causes putative non-stomatal inhibition of photosynthesis. New Phytologist, 110(4), 503–510.CrossRefGoogle Scholar
  7. Gates, D. M. (1964). Transpiration and leaf temperature. Annual Review of Plant Physiology, 19, 211–238.CrossRefGoogle Scholar
  8. Guimaraes, R. L., & Stotz, H. U. (2004). Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiology, 136, 3703–3711.PubMedCrossRefGoogle Scholar
  9. Idso, S. B., Jackson, R. D., Ehrler, W. L., & Mitchel, S. T. (1969). A method for determination of infrared emittance of leaves. Ecology, 50(5), 899–902.CrossRefGoogle Scholar
  10. Jones, H. G. (1999). Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant Cell and Environment, 22, 1043–1055.CrossRefGoogle Scholar
  11. Jones, H. G. (2004). Application of thermal imaging and infrared sensing in plant physiology and ecophysiology. Advances in Botanical Research, 41, 107–163.CrossRefGoogle Scholar
  12. Jones, H. G., Stoll, M., Santos, T., de Sousa, C., Chaves, M. M., & Grant, O. M. (2002). Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine. Journal of Experimental of Botany, 53, 2249–2260.CrossRefGoogle Scholar
  13. Karabourniotis, G., Bornman, J. F., & Nikolopoulos, D. (2000). A possible optical role of the bundle sheath extensions of the heterobaric leaves of Vitis vinifera and Quercus coccifera. Plant Cell and Environment, 23, 423–430.CrossRefGoogle Scholar
  14. Leinonen, I., & Jones, H. G. (2004). Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress. Journal of Experimental Botany, 55(401), 1423–1431.PubMedCrossRefGoogle Scholar
  15. Lindenthal, M., Steiner, U., Dehne, H. W., & Oerke, E. C. (2005). Effect of downy mildew development on transpiration of cucumber leaves visualized by digital infrared thermography. Phytopathology, 95, 233–240.PubMedCrossRefGoogle Scholar
  16. Lucas, J. A., & Dickinson, C. H. (1998). Plant pathology and plant pathogens. Oxford, UK: Blackwell Science, Inc.Google Scholar
  17. Oerke, E. C., Steiner, U., Dehne, H. W., & Lindenthal, M. (2006). Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions. Journal of Experimental Botany, 57, 2121–2132.PubMedCrossRefGoogle Scholar
  18. Rudelle, J., Octave, S., Kaid-Harche, M., Roblin, G., & Fleurat-Lessard, P. (2005). Structural modifications induced by Eutypa lata in the xylem of trunk and canes of Vitis vinifera. Functional Plant Biology, 32, 537–547.CrossRefGoogle Scholar
  19. Stoll, M., & Jones, H. G. (2007). Thermal imaging as a viable tool for monitoring plant stress. Journal International des Sciences de la Vigne et du Vin, 41(2), 77–84.Google Scholar
  20. Weyers, J. D. B., & Lawson, T. (1997). Heterogeneity in stomatal characteristics. Advances in Botanical Research, 26, 317–352.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Manfred Stoll
    • 1
  • Hans R. Schultz
    • 1
  • Gerhard Baecker
    • 2
  • Beate Berkelmann-Loehnertz
    • 3
  1. 1.Institut für Weinbau und Rebenzüchtung, Fachgebiet WeinbauForschungsanstalt GeisenheimGeisenheimGermany
  2. 2.Institut für Betriebswirtschaft und TechnikForschungsanstalt GeisenheimGeisenheimGermany
  3. 3.Institut für Biologie, Fachgebiet PhytomedizinForschungsanstalt GeisenheimGeisenheimGermany

Personalised recommendations