Precision Agriculture

, 9:233 | Cite as

Management zone delineation using a modified watershed algorithm

  • Pierre Roudier
  • Bruno Tisseyre
  • Hervé Poilvé
  • Jean-Michel Roger


Site-specific management (SSM) is a common way to manage within-field variability. This concept divides fields into site-specific management zones (SSMZ) according to one or several soil or crop characteristics. This paper proposes an original methodology for SSMZ delineation which is able to manage different kinds of crop and/or soil images using a powerful segmentation tool: the watershed algorithm. This image analysis algorithm was adapted to the specific constraints of precision agriculture. The algorithm was tested on high-resolution bio-physical images of a set of fields in France.


Management zones Remote sensing Image analysis Watershed segmentation 


  1. Baatz, M., & Schäpe, A. (2000). Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation. In J. Strobl, T. Blaschke, & G. Greisebener (Eds.), Angewandte Geographische Informationsverarbeitung XII, AGIT-Symposium Salzburg (Vol. 200, pp. 12–23). Karlsruhe: Herbert Wichmann Verlag.Google Scholar
  2. Beucher, B., & Lantuejoul, C. (1979). Use of watersheds in contour detection. In Proceedings of the International Workshop on Image Processing: Real-Time and Motion Detection/Estimation (Rennes, France). Available online: Last accessed 06/11/2008.
  3. Coquil, B., & Bordes, J. P. (2005). Farmstar: an efficient decision support tool for near real time crop management from satellite images. In J. V. Stafford (Ed.), Precision Agriculture’05: Proceedings of the 5th European Conference on Precision Agriculture (pp. 873–880). Netherlands: Wageningen Academic Publishers.Google Scholar
  4. Doerge, T. A. (1999). Management zone concepts. In Site-specific management guidelines. Atlanta, USA: Potash and Phosphate Institute.Google Scholar
  5. Fraisse, C., Sudduth, K., Kitchen, N., & Fridgen, J. (1999). Use of unsupervised clustering algorithms for delineating within-field management zones. In Proceedings of the ASAE International Meeting (Toronto, Canada), paper 993043. Available online: Last accessed 06/12/2008.
  6. Fridgen, J., Fraisse, C., Kitchen, N., & Sudduth, K. (2000). Delineation and analysis of site-specific management zones. In B. J. Petoskey (Ed.), Proceedings of the 2nd International Conference on Geospatial Information in Agriculture and Forestry (Vol. 2, pp. 402–411). Lake Buena Vista, USA: ERIM International, Inc.Google Scholar
  7. Fridgen, J., Kitchen, N., Sudduth, K., Drummond, S., Wiebold, W., & Fraisse, C. (2004). Management Zone Analyst (MZA), software for subfield management zone delineation. Agronomy Journal, 96, 100–108.Google Scholar
  8. Frogbrook, Z. L., & Oliver, M. A. (2007). Identifying management zones in agricultural fields using spatially constrained classification of soil and ancillary data. Soil Use Management, 23, 40–51. doi: 10.1111/j.1475-2743.2006.00065.x.CrossRefGoogle Scholar
  9. Godwin, R., Wood, G., Taylor, J., Knight, S., & Welsh, J. (2003). Precision farming of cereal crops: A review of a six year experiment to develop management guidelines. Biosystems Engineering, 84(4), 375–391. doi: 10.1016/S1537-5110(03)00031-X.CrossRefGoogle Scholar
  10. Grimaud, M. (1992). A new measure of contrast: Dynamics. In Proceedings of Image Algebra and Morphological Processing (pp. 292–305). SPIE 1769, San Diego, USA.Google Scholar
  11. Haris, K., Efstratiadis, S. N., & Maglaveras, N. (1998). Watershed-based image segmentation with fast region merging. In IEEE (Ed.) Proceedings of the International Conference on Image Processing (pp. 338–342). Chicago, USA: IEEE Computer Society.Google Scholar
  12. Hornung, A., Khosla, R., Reich, R., Inman, D., & Westfall, D. G. (2006). Comparison of site-specific management zones: Soil-color-based and yield-based. Agronomy Journal, 98, 407–415. doi: 10.2134/agronj2005.0240.CrossRefGoogle Scholar
  13. Jaynes, D., Colvin, T., & Kaspar, T. (2005). Identifying potential soybean management zones from multi-year yield data. Computational Electronics and Agriculture, 46, 309–327. doi: 10.1016/j.compag.2004.11.011.CrossRefGoogle Scholar
  14. Journel, A., & Huijbregts, C. (1978). Mining geostatistics. New York: Academic Press.Google Scholar
  15. Khosla, R., Fleming, K. L., Delgado, J. A., Shaver, T. M., & Westfall, D. G. (2002). Use of site-specific management zones to improve nitrogen management for precision agriculture. Journal of Soil Water Conservation, 57, 513–518.Google Scholar
  16. Lark, R. M. (1998). Forming spatially coherent regions by classification of multi-variate data: An example from the analysis of maps of crop yield. International Journal of Geographical Information Science, 12, 83–98. doi: 10.1080/136588198242021.CrossRefGoogle Scholar
  17. Lark, R. M. (2001). Some tools for parsimonious modeling and interpretation of within-field variation of soil and crop systems. Soil Tillage Research, 58, 99–111. doi: 10.1016/S0167-1987(00)00161-6.CrossRefGoogle Scholar
  18. Lark, R. M., & Stafford, J. V. (1997). Classification as a first step in the interpretation of temporal and spatial variation of crop yield. The Annals of Applied Biology, 130(1), 111–121. doi: 10.1111/j.1744-7348.1997.tb05787.x.CrossRefGoogle Scholar
  19. Li, X., Pan, Y., Zhang, C., Liu, L., & Wang, J. (2005). A new algorithm on delineation of management zone. In Proceedings of the International Geoscience and Remote Sensing Symposium (pp. 4–8). Seoul, South Korea: IEEE International.Google Scholar
  20. Li, Y., Shi, Z., Li, F., & Li, H. (2007). Delineation of site-specific management zones using fuzzy clustering analysis in a coastal saline land. Computational Electronics and Agriculture, 56(2), 174–186. doi: 10.1016/j.compag.2007.01.013.CrossRefGoogle Scholar
  21. Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58, 1246–1266.CrossRefGoogle Scholar
  22. McBratney, A. B., Whelan, B., Ancev, T., & Bouma, J. (2005). Future directions of precision agriculture. Precis Agriculture, 6, 7–23. doi: 10.1007/s11119-005-0681-8.CrossRefGoogle Scholar
  23. Meyer, F., & Beucher, S. (1990). Morphological segmentation. Journal of Visual Communication Image Representation, 1(1), 21–46. doi: 10.1016/1047-3203(90)90014-M.CrossRefGoogle Scholar
  24. Miao, Y., Mulla, D. J., & Robert, P. (2005). Combining soil-landscape and spatial-temporal variability of yield information to delineate site-specific management zones. In J. V. Stafford (Ed.), Precision Agriculture’05: Proceedings of the 5th European Conference on Precision Agriculture (pp. 811–818). The Netherlands: Wageningen Academic Publishers.Google Scholar
  25. Minasny, B., McBratney, A. B., & Whelan, B. (2005). Vesper version 1.62. Australian Centre for Precision Agriculture, McMillan Building A05, The University of Sydney, NSW 2006.Google Scholar
  26. Najman, L., & Schmitt, M. (1996). Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(12), 1163–1173. doi: 10.1109/34.546254.CrossRefGoogle Scholar
  27. Patino, L. (2005). Fuzzy relations applied to minimize over segmentation in watershed algorithms. Pattern Recognition Letters, 26(6), 819–828. doi: 10.1016/j.patrec.2004.09.036.CrossRefGoogle Scholar
  28. Pichel, J., Singh, D., & Rivera, F. (2006). Image segmentation based on merging of sub-optimal segmentations. Pattern Recognition Letters, 27(10), 1105–1116. doi: 10.1016/j.patrec.2005.12.012.CrossRefGoogle Scholar
  29. Ping, J., & Dobermann, A. (2003). Creating spatially contiguous yield classes for site-specific management. Agronomy Journal, 95, 1121–1131.Google Scholar
  30. Plant, R. (2001). Site-specific management: The application of information technology to crop production. Computational Electronics and Agriculture, 30, 9–29. doi: 10.1016/S0168-1699(00)00152-6.CrossRefGoogle Scholar
  31. Poilvé, H., & Coquil, B. (2003). Farmstar: A commercial remote sensing service to agriculture in Europe. In IGARSS’03: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France.Google Scholar
  32. Pringle, M., McBratney, A. B., & Taylor, J. (2003). A preliminary approach to assessing the opportunity for site-specific crop management in a field, using yield sensor data. Agricultural Systems, 76, 273–292. doi: 10.1016/S0308-521X(02)00005-7.CrossRefGoogle Scholar
  33. Rivest, J. F., Soille, P., & Beucher, S. (1993). Morphological gradients. Journal of Electronic Imaging, 2(4), 326–336. doi: 10.1117/12.159642.CrossRefGoogle Scholar
  34. Serra, J. (1982). Image analysis and mathematical morphology. New York: Academic Press.Google Scholar
  35. Simbahan, G., & Dobermann, A. (2006). An algorithm for spatially constrained classification of categorical and continuous soil properties. Geoderma, 136, 504–523. doi: 10.1016/j.geoderma.2006.04.019.CrossRefGoogle Scholar
  36. Taylor, J., Wood, G., Earl, R., & Godwin, R. (2003). Soil factors and their influence on within-crop variability. Part ii: Spatial analysis and determination of management zones. Biosystems Engineering, 84(4), 441–453. doi: 10.1016/S1537-5110(03)00005-9.CrossRefGoogle Scholar
  37. Tisseyre, B., & McBratney, A. B. (2008). A technical opportunity index based on mathematical morphology for site-specific management: An application to viticulture. Precision Agriculture, 9(1/2), 101–113. doi: 10.1007/s11119-008-9053-5.CrossRefGoogle Scholar
  38. Vincent, L., & Soille, P. (1991). Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(6), 583–598. doi: 10.1109/34.87344.CrossRefGoogle Scholar
  39. Vrindts, E., Mouazen, A., Reyniers, M., Maertens, K., Maleki, M., Ramon, H., et al. (2005). Management zones based on correlation between soil compaction, yield and crop data. Biosystems Engineering, 92(4), 419–428. doi: 10.1016/j.biosystemseng.2005.08.010.CrossRefGoogle Scholar
  40. Webster, R., & Oliver, M. A. (1990). Statistical methods in soil and land resource survey. New York: Oxford University Press.Google Scholar
  41. Whelan, B., & McBratney, A. B. (2003). Definition and interpretation of potential management zones in Australia. In Proceedings of the 11th Australian Agronomy Conference. Geelong, Australia: Australian Society of Agronomy.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Pierre Roudier
    • 1
    • 2
  • Bruno Tisseyre
    • 3
  • Hervé Poilvé
    • 2
  • Jean-Michel Roger
    • 1
  1. 1.CemagrefMontpellier Cedex 05France
  2. 2.Infoterra FranceToulouse Cedex 04France
  3. 3.Montpellier SupAgroMontpellier Cedex 01France

Personalised recommendations