Advertisement

Precision Agriculture

, Volume 6, Issue 6, pp 509–519 | Cite as

Impact of Residual Soil Nitrate on In-Season Nitrogen Applications to Irrigated Corn Based on Remotely Sensed Assessments of Crop Nitrogen Status

  • Walter C. Bausch
  • Jorge A. Delgado
Article

Abstract

Spatial and temporal variability of soil nitrogen (N) supply together with temporal variability of plant N demand make conventional N management difficult. This study was conducted to determine the impact of residual soil nitrate-N (NO3-N) on ground-based remote sensing management of in-season N fertilizer applications for commercial center-pivot irrigated corn (Zea mays L.) in northeast Colorado. Wedge-shaped areas were established to facilitate fertigation with the center pivot in two areas of the field that had significantly different amounts of residual soil NO3-N in the soil profile. One in-season fertigation (48 kg N ha−1) was required in the Bijou loamy sand soil with high residual NO3-N versus three in-season fertigations totaling 102 kg N ha−1 in the Valentine fine sand soil with low residual NO3-N. The farmer applied five fertigations to the field between the wedges for a total in-season N application of 214 kg N ha−1. Nitrogen input was reduced by 78% and 52%, respectively, in these two areas compared to the farmer’s traditional practice without any reductions in corn yield. The ground-based remote sensing management of in-season applied N increased N use efficiency and significantly reduced residual soil NO3-N (0–1.5 m depth) in the loamy sand soil area. Applying fertilizer N as needed by the crop and where needed in a field may reduce N inputs compared to traditional farmer accepted practices and improve in-season N management.

Keywords

residual soil nitrogen in-season N management remote sensing N Reflectance Index irrigated corn 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bausch, W. C. and Delgado, J. A. 2003. Ground-based sensing of plant nitrogen status in irrigated corn to improve nitrogen management. In: Digital Imaging and Spectral Techniques: Applications to Precision Agriculture and Crop Physiology, edited by T. VanToai, D. Major, M. McDonald, J. Schepers and L. Tarpley (ASA Special Publication 66, ASA, CSSA, SSSA, Madison, WI, USA), pp. 145–157.Google Scholar
  2. Bausch, W. C., Diker, K. 2001Innovative remote sensing techniques to increase nitrogen use efficiency of cornCommunications in Soil Science and Plant Analysis3213711390CrossRefGoogle Scholar
  3. Bausch, W. C., Duke, H. R. 1996Remote sensing of plant nitrogen status in cornTransactions of the ASAE3918691875Google Scholar
  4. Blackmer, T. M., Schepers, J. S., Varvel, G. E., Walter-Shea, E. A. 1996Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopiesAgronomy Journal8815Google Scholar
  5. Buchleiter, G. W. 1995. Improved irrigation management under center pivots using SCHED. In: Crop-Water-Simulation Models in Practice, edited by L. S. Pereira, B. J. van den Broek, P. Kabat and R. G.Allen (Wageningen, The Netherlands), pp. 27–47.Google Scholar
  6. Daughtry, C. S. T., Walthall, C. L., Kim, M. S., Brown de Colstoun, E., McMurtrey, J. E.,III 2000Estimating corn leaf chlorophyll concentration from leaf and canopy reflectanceRemote Sensing of the Environment74229239CrossRefGoogle Scholar
  7. Delgado, J. A. 1999. NLEAP simulation of soil type effects on residual soil NO3-N in the San Luis Valley and potential use for precision agriculture. In: Proceedings of the 4th International Conference on Precision Agriculture, edited by P. C. Robert, R. H. Rust and W. E. Larson (ASA-CSSA-SSSA, Madison, WI, USA), pp. 1367–1378.Google Scholar
  8. Delgado, J. A. 2001. Use of simulations for evaluation of best management practices on irrigated cropping systems. In: Modeling Carbon and Nitrogen Dynamics for Soil Management, edited by M. J. Shaffer, L. Ma and S. Hansen (Lewis Publishers, Boca Raton, FL, USA), pp. 355–381. Google Scholar
  9. Ferguson, R. B., Hergert, G. W., Schepers, J. S., Gotway, C. A., Cahoon, J. E., Peterson, T. A. 2002Site-specific nitrogen management of irrigated maize: yield and soil residual nitrate effectsSoil Science Society of America Journal66544553CrossRefGoogle Scholar
  10. Fleming, K. L., Westfall, D. G., Wiens, D. W., Brodahl, M. K. 2000Evaluating farmer defined management zone maps for variable rate fertilizer applicationPrecision Agriculture2201215CrossRefGoogle Scholar
  11. Gotway, C. A., Ferguson, R. B. and Hergert, G. W. 1996. The effects of mapping scale on variable-rate fertilizer recommendations for corn. In: Proceedings of the 3rd International Conference on Precision Agriculture, edited by P. C. Robert, R. H. Rust and W. E. Larson (ASA-CSSA-SSSA, Madison, WI, USA), pp. 321–330.Google Scholar
  12. Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., Dextraze, L. 2002Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agricultureRemote Sensing of the Environment81416426CrossRefGoogle Scholar
  13. Khosla, R., Fleming, K., Delgado, J. A., Shaver, T. M., Westfall, D. G. 2002Use of site-specific management zones to improve nitrogen management for precision agricultureJournal of Soil and Water Conservation57513518Google Scholar
  14. King, B. A., Stark, J. C. and Taberna, J. P. Jr. 1999. In-season spatial variability of potato petiole nitrogen. In: Proceedings of the 4th International Conference on Precision Agriculture, edited by P. C. Robert, R. H. Rust and W. E. Larson (ASA-CSSA-SSSA, Madison, WI, USA), pp. 55–65.Google Scholar
  15. Kostrzewski, M., Waller, P., Guertin, P., Haberland, J., Colaizzi, P., Barnes, E., Thompson, T., Clarke, T., Riley, E., Choi, C. 2002Ground-based remote sensing of water and nitrogen stressTransactions of the ASAE462938Google Scholar
  16. Mortvedt, J. J, Westfall, D. G., Croissant , R. L. 1996Fertilizer suggestions for cornColorado State UniversityFt. Collins, CO, USAColorado State University Cooperative Extension, Service in Action No. 0.538Google Scholar
  17. Pierce, F. J., Nowak, P. 1999Aspects of precision agricultureAdvances in Agronomy67185CrossRefGoogle Scholar
  18. Ritchie, S. W., Hanaway, J. J., Benson, G. O. 1986How a corn plant grows. Iowa State Extension Service Specialty Report 48Iowa State UniversityAmes, IA, USAGoogle Scholar
  19. Scharf, P. C., Wiebold, W. L., Lory, J. A. 2002Corn yield response to nitrogen fertilizer timing and deficiency levelAgronomy Journal94435441Google Scholar
  20. Schepers, J. S., Blackmer, T. M., Wilhelm, W. W., Resende, M. 1996Transmittance and reflectance measurements of corn leaves from plants with different nitrogen and water supplyJournal of Plant Physiology148523529Google Scholar
  21. Schleicher, T. D., Bausch, W. C., Delgado, J. A. 2003Low ground cover filtering to improve reliability of the nitrogen reflectance index (NRI) for corn N status classificationTransactions of the ASAE4617011711Google Scholar
  22. Solie, J. B., Stone, M. L., Needham, D. E., Washmon, C. N., Raun, W. R., Johnson, G. V., Lukina, E. V. and Thomason, W. E. 2000. In-season N fertilization using an in-season estimation of potential yield. In: Proceedings of the 5th International Conference on Precision Agriculture and Other Resource Management, edited by P. C. Robert, R. H. Rust and W. E. Larson (ASA-CSSA-SSSA, Madison, WI, USA)CD-ROM.Google Scholar
  23. Wiese, R. A, Ferguson, R. B., Hergert, G. W. 1987Fertilizer nitrogen best management practicesUniversity of Nebraska Cooperative ExtensionLincoln, NE, USANebGuide G87–829Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.USDA-ARS Water Management Research UnitFort CollinsUSA
  2. 2.USDA-ARS Soil Plant Nutrient Research UnitFort CollinsUSA

Personalised recommendations