Hyperbolic Green Function Estimates


For a hyperbolic Brownian motion in the hyperbolic space \(\mathbb {H}^{n}, n\ge 3\), we prove a representation of a Green function and a Poisson kernel for bounded and smooth sets in terms of the corresponding objects for an ordinary Euclidean Brownian motion and a conditional gauge functional. Using this representation we prove bounds for the Green functions and Poisson kernels for smooth sets. In particular, we provide a two sided sharp estimate of the Green function of a hyperbolic ball of any radius. By usual isomorphism argument the same estimate holds in any other model of a real hyperbolic space.


  1. 1.

    Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. Pure and Applied Mathematics, vol. 29. Academic Press, New York (1968)

    Google Scholar 

  2. 2.

    Bogdan, K.: Sharp estimates for the Green function in Lipschitz domains. J. Math. Anal. Appl. 243, 326–337 (2000)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bogdan, K., Jakubowski, T.: Estimates of the Green function for the fractional Laplacian perturbed by gradient. Pot. Anal. 36, 455–481 (2012)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bogus, K., Byczkowski, T., Małecki, J.: Sharp estimates of green function of hyperbolic Brownian motion. Studia Math. 228(3), 197–222 (2015)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Byczkowski, T., Małecki, J.: Poisson kernel and Green function of the ball in real hyperbolic spaces. Potential Anal. 27, 1–16 (2007)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Byczkowski, T., Graczyk, P., Stós, A.: Poisson kernels of half-spaces in real hyperbolic spaces. Revista Math. Iberoamericana 23(1), 85–126 (2007)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Byczkowski, T., Ryznar, M.: Hitting distribution of geometric Brownian motion. Studia Math. 173(1), 19–38 (2006)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Cammarota, V., Orsingher, E.: Hitting spheres on hyperbolic spaces. Teor. Veroyatn. Primen. 57, 560–587 (2013)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Chung, K.L., Zhao, Z.: From Brownian Motion to Schrödinger’s Equation. Springer (1995)

  10. 10.

    Chung, K.L., Walsh, J.B.: Markov Processes, Brownian Motion, and Time Symmetry, 2nd edn. Grundlehren der Mathematischen Wissenschaften, vol. 249. Springer (2005)

  11. 11.

    Cranston, M., Fabes, E., Zhao, Z: Conditional gauge and potential theory for the Schrödinger operator. Trans. AMS 307(1), 171–194 (1988)

    MATH  Google Scholar 

  12. 12.

    Davies, E.B: Heat Kernels and Spectral Theory. Cambridge Univ. Press (1989)

  13. 13.

    Ethier, S., Kurtz, T.G.: Markov Processes. Characterization and Convergence. Wiley, New York (1986)

    Google Scholar 

  14. 14.

    Helgason, S.: Groups and Geometric Analysis. Academic Press (1984)

  15. 15.

    Hueber, H., Sieveking, M.: Uniform bounds for quotients of Green functions on C1,1 domains. Ann. Inst. Fourier 32(1), 105–117 (1982)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Hunt, G.A.: Markov processes and potentials I, II and III. Illinois J. Math. 1, 44–93 and 316–369 (1957). and Illinois J. of Math. 2, 151–213, (1958)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Matsumoto, H.: Closed form formulae for the heat kernels and the Green functions for the Laplacians on the symmetric spaces of rank one. Bull. Sc. Math. 125(6-7), 553–581 (2001)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Ratcliffe, J.G.: Foundations of Hyperbolic Manifolds, Graduate Texts in Math, vol. 149. Springer (2006)

  19. 19.

    Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer (2005)

  20. 20.

    Ryznar, M., Żak, T.: Exit time of a hyperbolic α-stable process from a halfspace or a ball. Potential Anal. 45(1), 83–107 (2016)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Serafin, G.: Potential theory of hyperbolic Brownian motion in tube domains. Colloq. Math. 135, 27–52 (2014)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Serafin, G.: On potential theory of hyperbolic Brownian motion with drift. Probab. Math. Statist. 40(1), 1–22 (2020)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Symeonidis, E.: The Poisson integral for a ball in spaces of constant curvature. Commentationes Math. Univer. Carolinae 44(3), 437–460 (2003)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Zhao, Z.: Green function for Schrödinger operator and conditioned Feynman-Kac gauge. J. Math. Anal. Appl. 116, 309–334 (1986)

    MathSciNet  Article  Google Scholar 

Download references


G. Serafin was supported by the National Science Centre, Poland, grant no. 2015/18/E/ST1/00239. M. Ryznar and T. Żak were partially supported by the National Science Centre, Poland, grant no. 2015/17/B/ST1/01043. We thank the referee for valuable comments and remarks which improved the presentation of the paper.

Author information



Corresponding author

Correspondence to M. Ryznar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



Proposition A.1 1

Let \(a>\frac {n-1}2\), n ≥ 2, and let B be any Euclidean ball in \(\mathbb {R}^{n}\). Then we have

$${\int}_{\partial B}\frac{1}{|x-z|^{2a}}dz\approx \frac{1}{(\rho_{B}(x))^{2a-n+1}},\ x\in B,$$

where the comparability constant depends only on a and n, and ρB(x) stands for Euclidean distance between x and B.


Without loss of generality we may assume B = B(0, 1) and x = (0,..., 0,xn), where xn > 0. It is clear that for \(x_{n}<\frac 12\) the integral is comparable with a constant. For \(x_{n}\geq \frac 12\) we rewrite it as follows

$$ \begin{array}{@{}rcl@{}} {\int}_{\partial B}\frac{1}{|x-z|^{2a}}dz&={\int}_{\partial B}\frac{1}{\left( {z_{1}^{2}}+...+z_{n-1}^{2}+(x_{n}-z_{n})^{2}\right)^{a}}dz\\ &={\Omega}_{n-2}{\int}_{-1}^{1}\frac{(1-r^{2})^{(n-3)/2}}{\left( 1^{2}-r^{2}+(x_{n}-r)^{2}\right)^{a}}dr\\ &={\Omega}_{n-2}{{\int}_{0}^{2}}\frac{(u(2-u))^{(n-3)/2}}{\left( (1-x_{n})^{2}+2x_{n}u\right)^{a}}du\\ &{\approx{\int}_{0}^{1}}\frac{u^{(n-3)/2}}{\left( (1-x_{n})^{2}+2x_{n}u\right)^{a}}du, \end{array} $$

where Ωn− 2 is the surface area of the unit sphere in \(\mathbb {R}^{n-1}\). Next, we substitute \(u=\frac {(1-x_{n})^{2}}{2x_{n}}s\) and get


Since for \(x_{n}\geq \frac 12\) it holds xn ≈ 1 and 4xn/(1 − xn)2 > 8, we obtain the required estimate. □

Corollary A.1 1

Let γ > 0 and let BR, R > 1, be defined as in (18). If xBR and \(\delta _{B_{R}}(x)>1\), then

$${\int}_{\partial B_{R}}\frac{x_{n}^{2\gamma}}{|x-z|^{2\gamma+n-1}}dz\approx1, $$

where the comparability constant depends only on γ and n.


We fix R > 1 and denote B = BR. In view of the previous proposition, it is enough to show that ρB(x) ≈ xn whenever δB(x) > 1. The inequality ρB(x) ≤ xn is clear. On the other hand, we may write

$$\rho_{B}(x)=\sinh R-\sqrt{|\tilde x|^{2}+(x_{n}-\cosh R)^{2}}\approx \frac{\sinh^{2}R-|\tilde x|^{2}-(x_{n}-\cosh R)^{2}}{\sinh R}.$$

The assumption δB(x) > 1 implies xBR− 1, which gives us

$$ \begin{array}{@{}rcl@{}} &\sinh^{2}R-|\tilde x|^{2}-(x_{n}-\cosh R)^{2}\\ &>\sinh^{2}R-\sinh^{2}(R-1)+(x_{n}-\cosh (R-1))^{2}-(x_{n}-\cosh R)^{2}\\ &=2x_{n}(\cosh R-\cosh(R-1))\approx x_{n}\cosh R. \end{array} $$

Finally, we get

$$\rho_{B}(x)\ge C(n) x_{n}\frac{\cosh R}{\sinh R}\approx x_{n},$$

which ends the proof. □

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ryznar, M., Serafin, G. & Żak, T. Hyperbolic Green Function Estimates. Potential Anal 54, 535–559 (2021). https://doi.org/10.1007/s11118-020-09837-5

Download citation


  • Hitting times and distributions
  • Poisson kernels
  • Green functions
  • Hyperbolic spaces

Mathematics Subject Classification (2000)

  • Primary 60J45
  • Secondary 60J60