A Decomposition of Calderón–Zygmund Type and Some Observations on Differentiation of Integrals on the Infinite-Dimensional Torus


In this note we will show a Calderón–Zygmund decomposition associated with a function \(f\in L^{1}(\mathbb {T}^{\omega })\). The idea relies on an adaptation of a more general result by J. L. Rubio de Francia in the setting of locally compact groups. Some related results about differentiation of integrals on the infinite-dimensional torus are also discussed.

This is a preview of subscription content, access via your institution.


  1. 1.

    Bendikov, A.D.: Potential theory on infinite-dimensional Abelian Groups. Walter de Gruyter (1995)

  2. 2.

    Bendikov, A., Coulhon, T., Saloff-Coste, L.: Ultracontractivity and embedding into \(L^{\infty }\). Math. Ann. 337(4), 817–853 (2007)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bendikov, A., Saloff-Coste, L.: Spaces of smooth functions and distributions on infinite-dimensional compact groups. J. Funct. Anal. 218(1), 168–218 (2005)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bendikov, A., Saloff-Coste, L.: Hypoelliptic bi-invariant Laplacians on infinite dimensional compact groups. Canad. J. Math. 58(4), 691–725 (2006)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Berg, C.: Potential theory on the infinite dimensional torus. Invent. Math. 32 (1), 49–100 (1976)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Bohr, H.: Über die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichletschen Reihen. Nachr. Ges. Wiss. Göttingen Math.-Phys. Klasse 1913, Heft 4, 441–488

  7. 7.

    Bruckner, A.M.: Differentiation of integrals. Am. Math. Month. 78(9), Supplement, H.E. Slaught Memorial Paper No. 12, i–iv + 1–52 (1971)

  8. 8.

    Busemann, H., Feller, W.: Zur Differentiation der Lebesgueschen Integrale. Fund. Math. 22, 226–256 (1934)

    Article  Google Scholar 

  9. 9.

    Calderón, A.P., Zygmund, A: On the existence of certain singular integrals. Acta Math. 88, 85–139 (1952)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Dieudonné, J.: Sur un théorème de Jessen. Fund. Mat. 37, 242–248 (1950)

    Article  Google Scholar 

  11. 11.

    Doob, J.L.: Stochastic processes. John Wiley & Sons Inc., New York (1953)

    MATH  Google Scholar 

  12. 12.

    Duoandikoetxea, J.: Fourier Analysis, translated and revised by David Cruz-Uribe, SFO. Graduate Studies in Mathematics, Vol. 29 American Mathematical Society (2001)

  13. 13.

    Edwards, R.E., Gaudry, G.I.: Littlewood-Paley and multiplier theory. Springer, Berlin (1977)

  14. 14.

    Grafakos, L.: Classical Fourier analysis, 3rd edn. Springer, Berlin (2014)

    MATH  Google Scholar 

  15. 15.

    de Guzmán, M.: Differentiation of Integrals in \(\mathbb {R}^{n}\). Lecture Notes in Mathematics 481, Springer (1975)

  16. 16.

    de Guzmán, M., Welland, G.W.: On the differentiation of integrals. Rev. Un. Mat. Argentina 25, 253–276 (1971)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Hayes, C.A., Pauc, C.Y.: Derivation and Martingales. Ergebnisse der Mathematik und ihrer Grenzgebiete Band 49, Springer (1970)

  18. 18.

    Helson, H., Lowdenslager, D.: Prediction theory and Fourier series in several variables. Acta Math. 99, 165–202 (1958)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Hewitt, E., Stromberg, K.: Real and abstract analysis, 3rd edn. Springer, Berlin (1975)

    MATH  Google Scholar 

  20. 20.

    Jessen, B.: The theory of integration in a space of an infinite number of dimensions. Acta Math. 63, 249–323 (1934)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Jessen, B.: A remark on strong differentiation in a space of infinitely many dimensions. Mat. Tidsskr. B 1950, 54–57 (1950)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Jessen, B.: On strong differentiation. Mat. Tidsskr. B 1952, 90–91 (1952)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Kelley, J.L.: General Topology. D. van Norstrand Co Inc. (1955)

  24. 24.

    Munroe, M.E.: Introduction to measure and integration. Addison-Wesley Pub. Co., Inc., Massachusetts (1953)

    MATH  Google Scholar 

  25. 25.

    Neveu, J.: Martingales à temps discret. Masson et Cie (1972)

  26. 26.

    Platonov, S.S.: On some problems of the theory of the approximation of functions on an infinite-dimensional torus: analogues of Jackson theorems. (Russian) Algebra i Analiz 26(6), 99–120 (2014). translation in St. Petersburg Math. J. 26 (2015), no. 6, 933–947

    MathSciNet  Google Scholar 

  27. 27.

    de Possel, R.: Sur la dérivation abstraite des fonctions d’ensemble. J. Math. Pures Appl. 15, 391–409 (1936). Source Bibliothèque nationale de France

  28. 28.

    Rubio de Francia, J.L.: Nets of subgroups in locally compact groups. Comment. Math. Prace Mat. 20(2), 453–466 (1977/78)

  29. 29.

    Rubio de Francia, J.L.: Convergencia de series de Fourier de infinitas variables. In: Proceedings of the 7th Spanish-Portuguese conference on mathematics, Part II (Sant Feliu de Guíxols, 1980), Publ. Sec. Mat. Univ. Autònoma Barcelona no. 21, 237–241 (1980)

  30. 30.

    Rudin, W.: Fourier analysis on groups. Wiley, New York (1962)

    MATH  Google Scholar 

  31. 31.

    Saks, S.: Theory of the integral, 2nd edn., vol. VII. Monografie Matematyczne, Warsaw (1937)

  32. 32.

    Stein, E.M.: Topics in harmonic analysis related to the Littlewood-Paley theory. Annals of Mathematics Studies, No. 63. Princeton Univ Press and University of Tokyo Press (1970)

  33. 33.

    de la Vallée Poussin, C.: Sur l’Intégrale de Lebesgue. Trans. Am. Math. Soc. 16, 435–501 (1915)

    MATH  Google Scholar 

  34. 34.

    Shiryaev, A.N.: Probability, 2nd edn. Springer, Berlin (1992)

Download references


The authors would like to thank the referees for their very careful reading and useful comments which indeed improved the presentation of the paper.

Author information



Corresponding author

Correspondence to Luz Roncal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second author is supported by the Basque Government through the BERC 2018-2021 program, by Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa excellence accreditation SEV-2017-2018 and through project MTM2017-82160-C2-1-P funded by (AEI/FEDER, UE) and acronym “HAQMEC”, and by a2017 Leonardo grant for Researchers and Cultural Creators, BBVA Foundation. The Foundation accepts no responsibility for the opinions, statements and contents included in the project and/or the results thereof, which are entirely the responsibility of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fernández, E., Roncal, L. A Decomposition of Calderón–Zygmund Type and Some Observations on Differentiation of Integrals on the Infinite-Dimensional Torus. Potential Anal 53, 1449–1465 (2020). https://doi.org/10.1007/s11118-019-09813-8

Download citation


  • Infinite dimensional torus
  • Calderón–Zygmund decomposition
  • Differentiation of integrals
  • Differentiation basis
  • Locally compact groups

Mathematics Subject Classification (2010)

  • Primary: 42B05
  • Secondary: 20E07, 43A70