Weighted Norm Inequalities for Local Fractional Integrals on Gaussian Measure Spaces


In this paper, the authors establish the weighted norm inequalities associated with the local Muckenhoupt weights for the local fractional integrals on Gaussian measure spaces. More precisely, the authors first obtain the weighted boundedness of local fractional integrals of order β from Lp(ωp) to Lq(ωq) for \(p\in (1,\infty )\) and from Lp(ωp) to \(L^{q,\infty }(\omega ^{q})\) for p = 1 under the condition of ωAp,q,a, where 1/q = 1/pβ, and then obtain the weighted boundedness of the local fractional integrals, local fractional maximal operators and local Hardy-Littlewood maximal operators on the Morrey-type spaces over Gaussian measure spaces. Moreover, the method of proving the weighted weak type endpoint estimates of local fractional integrals is new.

This is a preview of subscription content, log in to check access.


  1. 1.

    Adams, D.R.: A note on Riesz potentials. Duke Math. J. 42, 765–778 (1975)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Adams, D.R., Xiao, J.: Morrey spaces in harmonic analysis. Ark. Mat. 50, 201–230 (2012)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Aimar, H., Forzani, L., Scotto, R.: On Riesz transforms and maximal functions in the context of Gaussian harmonic analysis. Trans. Amer. Math. Soc. 359, 2137–2154 (2007)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Chiarenza, F., Frasca, M.: Morrey spaces and Hardy–Littlewood maximal function. Rend. Math. Appl. 7, 273–279 (1987)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc. 83, 569–645 (1977)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Fabes, E.B., Gutíerrez, C., Scotto, R.: Weak type estimates for the Riesz transforms associated with the Gaussian measure. Rev. Mat. Iberoam. 10, 229–281 (1994)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Forzani, L., Harboure, E., Scotto, R.: Weak type inequality for a family of singular integral operators related with the gaussian measure. Potential Anal. 31, 103–116 (2009)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Forzani, L., Scotto, R., Urbina, W.: Riesz and Bessel potentials, the gλ functions and an area function for the Gaussian measure γ. Rev. Un. Mat. Argentina 42, 17–37 (2000)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    García-Cuerva, J., Mauceri, G., Meda, S., Sjögren, P., Torrea, J.L.: Maximal operators for the Ornstein–Uhlenbeck semigroup. J. Lond. Math. Soc. 67, 219–234 (2003)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Grafakos, L.: Classical Fourier Analysis, 3rd edn., Grad Texts in Math., 249. Springer, New York (2014)

    Google Scholar 

  11. 11.

    Gutiérrez, C.: On the Riesz transforms for Gaussian measures. J. Funct. Anal. 120, 107–134 (1994)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Jones, P.W.: Factorization of Ap weights. Ann. Math. 111, 511–530 (1980)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Komori, Y., Shirai, S.: Weighted Morrey spaces and a singular integral operator. Math. Nachr. 282, 219–231 (2009)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Lin, C., Stempak, K., Wang, Y.: Local maximal operators on measure metric spaces. Publ. Mat. 57, 239–264 (2013)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Liu, L., Sawano, Y., Yang, D.: Morrey-type spaces on Gauss measure spaces and boundedness of singular integrals. J. Geom. Anal. 24, 1007–1051 (2014)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Liu, L., Xiao, J.: Restricting Riesz–Morrey–Hardy potentials. J. Differential Equations 262, 5468–5496 (2017)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Liu, L., Yang, D.: Characterizations of BMO associated with Gauss measures via commutators of local fractional integrals. Israel J. Math. 180, 285–315 (2010)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Liu, L., Yang, D.: BLO Spaces associated with the Ornstein–Uhlenbeck operator. Bull. Sci. Math. 132, 633–649 (2008)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Maas, J., Neerven, J., Portal, P.: Conical square functions and non-tangential maximal functions with respect to the gaussian measure. Publ. Mat. 55, 313–341 (2011)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Maas, J., Neerven, J., Portal, P.: Whitney coverings and the tent spaces for the Gaussian measure. Ark. Mat. 50, 379–395 (2012)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Mauceri, G., Meda, S.: BMO And H1 for the Ornstein–Uhlenbeck operator. J. Funct. Anal. 252, 278–313 (2007)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Mauceri, G., Meda, S., Sjögren, P.: Endpoint estimates for first-order Riesz transforms associated to the Ornstein–Uhlenbeck operator. Rev. Mat. Iberoam. 28, 77–91 (2012)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Mauceri, G., Meda, S., Sjögren, P.: A maximal function characterisation of the Hardy space for the Gauss measure. Proc. Amer. Math. Soc. 141, 1679–1692 (2013)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Morrey, C.B.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc. 43, 126–166 (1938)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 165, 207–226 (1972)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Muckenhoupt, B., Wheeden, R.: Weighted norm inequalities for fractional integrals. Trans. Amer. Math. Soc. 192, 261–274 (1974)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Nazarov, F., Treil, S., Volberg, A.: The Tb-theorem on non-homogeneous spaces. Acta Math. 190, 151–239 (2003)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Pérez, S.: Boundedness of Littlewood–Paley g-functions of higher order associated with the Ornstein–Uhlenbeck semigroup. Indiana Univ. Math. J. 50, 1003–1014 (2001)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Portal, P.: Maximal and quadratic Gaussian Hardy spaces. Rev. Mat. Iberoam. 30, 79–108 (2014)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Sawano, Y.: Sharp estimate of the modified Hardy–Littlewood maximal operator on the nonhomogeneous space via covering lemmas. Hokkaido Math. J. 34, 435–458 (2005)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Sjögren, P.: A remark on the maximal function for measures in \(\mathbb {R}^{n}\). Amer. J. Math. 105, 1231–1233 (1983)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Sjögren, P.: Operators associated with the Hermite semigroup - a survey. J. Fourier Anal. Appl. 3, 813–823 (1997)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Tolsa, X.: BMO, H1 and Calderón–Zygmund operators for nondoubling measures. Math. Ann. 319, 89–149 (2001)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Urbina, W.: On singular integrals with respect to the Gaussian measure. Ann. Sc. Norm. Super. Pisa Cl. Sci. 17, 531–567 (1990)

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Wang, S., Zhou, H., Li, P.: Local Muckenhoupt weights on Gaussian measure spaces. J. Math. Anal. Appl. 438, 790–806 (2016)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Welland, G.V.: Weighted norm inequalities for fractional integrals. Proc. Amer. Math. Soc. 51, 143–148 (1975)

    MathSciNet  Article  Google Scholar 

Download references


The authors would like to thank Professor Liguang Liu for her careful reading and many valuable comments. The authors also sincerely express their thanks to the referee for his/her valuable remarks, which greatly improve the presentation of this article.

Author information



Corresponding author

Correspondence to Shengchen Mao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the National Training Program of Innovation (Grant No. 201910019171).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Mao, S. Weighted Norm Inequalities for Local Fractional Integrals on Gaussian Measure Spaces. Potential Anal 53, 1377–1401 (2020). https://doi.org/10.1007/s11118-019-09810-x

Download citation


  • Local fractional integral
  • Local fractional maximal operator
  • Gaussian measure space
  • Morrey-type space

Mathematics Subject Classification (2010)

  • Primary 42B35
  • Secondary 42B20, 42B25