Li-Yau Inequality for Heat Equations on RCD(K,N) Metric Measure Spaces

Abstract

In this paper, we will study the Li-Yau inequalities for weak solutions of the heat equation on RCD(K,N) metric measure spaces.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Ambrosio, L., Gigli, N., Savaré, G.: Bakry–Emery curvature-dimension condition and Riemannian Ricci curvature bounds. Ann. Probab. 43, 339–404 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. 195(2), 289–391 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Ambrosio, L., Mondino, A., Savaré, G.: On the bakry-Émery condition, the gradient estimates and the local-to global property of RCD(K,N) metric measure spaces. J. Geom. Anal. 26(1), 24–56 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Bacher, K., Sturm, K.: Localization and tensonrization properties of the curvature-dimension for metric measure spaces. J. Funct. Anal. 259(1), 28–56 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Bakry, D., Bolley, F., Gentil, I.: The Li-Yau inequality and applications under a curvature-dimension condition, available at arXiv:1412.5165

  6. 6.

    Bakry, D., Ledoux, M.: A logarithmic Sobolev form of the Li-Yau parabolic inequality. Rev. Mat. Iberoam. 22(2), 683–702 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Bauer, F., Horn, P., Lin, Y., Lippner, G., Mangoubi, D., Yau, S.-T.: Li-Yau inequality on graphs. J. Differ. Geom. 99, 359–405 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Bakry, D., Qian, Z.: Harnack inequalities on a manifold with positive or negative Ricci curvature. Rev. Mat. Iberoam. 15(1), 143–179 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Chen, Z., Yu, C., Zhao, F.: On the Li-Yau type gradient estimate of Li and Xu, arXiv:1706.06249 [math.DG]

  10. 10.

    Davies, E.B.: Heat Kernels and Spectral Theory, Volume 92 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  11. 11.

    Erbar, M., Kuwada, K., Sturm, K.: On the equivalence of the entropic curvature-dimension condition and bochners inequality on metric measure spaces. Invent. Math. 201, 993–1071 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Garofalo, N., Mondino, A.: Li-Yau and Harnack type inequalities in metric measure spaces. Nonlinear Anal. 95, 721–734 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Gigli, N.: On the differential structure of metric measure spaces and applications. Mem. Amer. Math. Soc. 236(1113), 1–104 (2015)

  14. 14.

    Hörmander, L.: The Analysis of Linear Partial Differential Operators I, 2th Edition, in ‘Grundlehren Der Mathematischen Wissenschaften’, vol. 256. Springer-Verlag, Berlin (1989)

    Google Scholar 

  15. 15.

    Hamilton, R.: A matrix Harnack estimate for the heat equation. Commun. Anal. Geom. 1(1), 88–99 (1993)

    MathSciNet  Google Scholar 

  16. 16.

    Jiang, R.: The Li-Yau inequality and heat kernels on metric measure spaces. J. Math. Pures Appl. 104(9), 29–57 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Jiang, R., Zhang, H.C.: Hamiltons gradient estimates and a monotonicity formula for heat flows on metric measure spaces. Nonlinear Anal. 131, 32–47 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Jiang, Y., Zhang, H.C.: Sharp spectral gaps on metric measure spaces. Calc. Var. PDE. 55(1, Art. 14), 14 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Lee, P.W.Y.: Generalized Li-Yau estimates and Huisken’s monotonicity formula, available at arXiv:1211.5559

  20. 20.

    Li, J., Xu, X.: Differential Harnack inequalities on Riemannian manifolds I: linear heat equation. Adv. Math. 226(5), 4456–4491 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Li, X.-D.: Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J. Math. Pures Appl. 54, 1295–1361 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169, 903–991 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Lott, J., Villani, C.: Weak curvature bounds and functional inequalities. J. Funct. Anal. 245(1), 311–333 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Olivé, X.R.: Neumann Li-Yau gradient estimate under integral Ricci curvature bounds, arXiv:1710.08649 [math.DG]

  25. 25.

    Petrunin, A.: Alexandrov meets Lott–Villani–Sturm. Münster J. Math. 4, 53–64 (2011)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Qian, B.: Remarks on differential Harnack inequalities. J. Math. Anal. Appl. 409(1), 556–566 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Qian, Z., Zhang, H.-C., Zhu, X.-P.: Sharp spectral gap and Li-Yau’s estimate on Alexandrov spaces. Math. Z. 273(3-4), 1175–1195 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    Souplet, P., Zhang, Q.S.: Sharp gradient estimate and Yau’s Liouville theorem for the heat equation on noncompact manifolds. Bull. London Math. Soc. 38(6), 1045–1053 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Sturm, K.: On the geometry of metric measure spaces. I, II. Acta Math. 196(1), 65–131, 133–177 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Sturm, K.: Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality. J. Math. Pures Appl. 75, 273–297 (1996)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Zhang, H.C., Zhu, X.P.: Ricci curvature on Alexandrov spaces and rigidity theorems. Comm. Anal. Geom. 18(3), 503–554 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Zhang, H.C., Zhu, X.P.: Lipschitz continuity of harmonic maps between Alexandrov spaces, Invent. Math. https://doi.org/10.1007/s00222-017-0757-x (2017)

  33. 33.

    Zhang, H.C., Zhu, X.P.: Local Li–Yau’s estimates on RCD(K,N) metric measure spaces. Calc. Var. PDE 55, 93 (2016). https://doi.org/10.1007/s00526-016-1040-5

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    Zhang, Q.S., Zhu, M.: Li-Yau gradient bound for collapsing manifolds under integral curvature condition. Proc. Amer. Math. Soc. 145(7), 3117–3126 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Zhang, Q.S., Zhu, M.: Li-Yau gradient bounds under nearly optimal curvature conditions, arXiv:1511.00791 [math.DG]

Download references

Acknowledgements

The author gratefully acknowledges support from the China Postdoctoral Science Foundation, grant number KLH1411048.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jia-Cheng Huang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, J. Li-Yau Inequality for Heat Equations on RCD(K,N) Metric Measure Spaces. Potential Anal 53, 315–328 (2020). https://doi.org/10.1007/s11118-019-09770-2

Download citation

Keywords

  • Heat equation
  • Li-Yau inequality