Potential Analysis

, Volume 48, Issue 3, pp 301–323 | Cite as

The Semi-infinite Asymmetric Exclusion Process: Large Deviations via Matrix Products

  • Horacio González Duhart
  • Peter Mörters
  • Johannes Zimmer
Open Access


We study the totally asymmetric exclusion process on the positive integers with a single particle source at the origin. Liggett (Trans. Am. Math. Soc. 213, 237–261, 1975) has shown that the long term behaviour of this process has a phase transition: If the particle production rate at the source and the original density are below a critical value, the stationary measure is a product measure, otherwise the stationary measure is spatially correlated. Following the approach of Derrida et al. (J. Phys. A 26(7), 1493, 1993) it was shown by Grosskinsky (2004) that these correlations can be described by means of a matrix product representation. In this paper we derive a large deviation principle with explicit rate function for the particle density in a macroscopic box based on this representation. The novel and rigorous technique we develop for this problem combines spectral theoretical and combinatorial ideas and is potentially applicable to other models described by matrix products.


Large deviation principle Matrix product ansatz Toeplitz operator Exclusion process Open boundary Phase transition Out of equilibrium 

Mathematics Subject Classification (2010)

Primary 60F10 Secondary 37K05, 60K35, 82C22 



HGD has been supported by CONACYT with CVU 302663, PM by EPSRC Grant EP/K016075/1. JZ has been partially supported by the Leverhulme Trust, Grant RPG-2013-261, EPSRC, Grant EP/K027743/1 and a Royal Society Wolfson Research Merit Award. We also thank Rob Jack for his useful comments.


  1. 1.
    Angeletti, F., Touchette, H., Bertin, E., Abry, P.: Large deviations for correlated random variables described by a matrix product ansatz. J. Stat. Mech. Theory Exp. 2014(2), P02003, 17 (2014)Google Scholar
  2. 2.
    Bahadoran, C.: A quasi-potential for conservation laws with boundary conditions. arXiv:1010.3624 (2010)
  3. 3.
    Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Large deviations for the boundary driven symmetric simple exclusion process. Math. Phys. Anal. Geom. 6(3), 231–267 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Large deviation approach to non equilibrium processes in stochastic lattice gases. Bull. Braz. Math. Soc. 37(4), 611–643 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bertini, L., Landim, C., Mourragui, M.: Dynamical large deviations for the boundary driven weakly asymmetric exclusion process. Ann. Probab. 37(6), 2357–2403 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Blythe, R. A., Evans, M. R.: Nonequilibrium steady states of matrix-product form: a solver’s guide. J. Phys. A 40(46), R333–R441 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bodineau, T., Giacomin, G.: From dynamic to static large deviations in boundary driven exclusion particle systems. Stoch. Proc. Appl. 110(1), 67–81 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, Volume 38 of Stochastic Modelling and Applied Probability. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  9. 9.
    den Hollander, F.: Large Deviations, Volume 14 of Fields Institute Monographs. American Mathematical Society, Providence (2000)Google Scholar
  10. 10.
    Derrida, B.: Matrix ansatz large deviations of the density in exclusion processes. In: International Congress of Mathematicians, vol. III, pp. 367–382. Eur. Math. Soc., Zürich (2006)Google Scholar
  11. 11.
    Derrida, B., Evans, M. R., Hakim, V., Pasquier, V.: Exact solution of a 1d asymmetric exclusion model using a matrix formulation. J. Phys. A 26(7), 1493–1517 (1993)Google Scholar
  12. 12.
    Derrida, B., Lebowitz, J. L., Speer, E. R.: Exact large deviation functional of a stationary open driven diffusive system: the asymmetric exclusion process. J. Statist. Phys. 110(3–6), 775–810 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Evans, M. R., Ferrari, P. A., Mallick, K.: Matrix representation of the stationary measure for the multispecies TASEP. J. Stat. Phys. 135(2), 217–239 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Grosskinsky, S.: Phase transitions in nonequilibrium stochastic particle systems with local conservation laws. PhD thesis, TU Munich (2004)Google Scholar
  15. 15.
    Hinrichsen, H.: Matrix product ground states for exclusion processes with parallel dynamics. J. Phys. A 29(13), 3659–3667 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Liggett, T. M.: Ergodic theorems for the asymmetric simple exclusion process. Trans. Am. Math. Soc. 213, 237–261 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Nyawo, P. T., Touchette, H.: A minimal model of dynamical phase transition. EPL (Europhys. Lett.) 116(5), 50009 (2016)CrossRefGoogle Scholar
  18. 18.
    Sasamoto, T.: One-dimensional partially asymmetric simple exclusion process with open boundaries: orthogonal polynomials approach. J. Phys. A 32(41), 7109–7131 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sasamoto, T., Williams, L.: Combinatorics of the asymmetric exclusion process on a semi-infinite lattice. arXiv:1204.1114 (2012)
  20. 20.
    Stinchcombe, R. B., Schütz, G. M.: Operator algebra for stochastic dynamics and the Heisenberg chain. EPL (Europhys. Lett.) 29(9), 663 (1995)CrossRefGoogle Scholar
  21. 21.
    Tracy, C. A., Widom, H.: The asymmetric simple exclusion process with an open boundary. J. Math. Phys. 54(10), 103301, 16 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Trefethen, L. N., Embree, M.: Spectra and Pseudospectra. Princeton University Press, Princeton (2005)zbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.University of BathBathUK

Personalised recommendations