Potential Analysis

, Volume 46, Issue 3, pp 569–588 | Cite as

Liouville Type Theorems for PDE and IE Systems Involving Fractional Laplacian on a Half Space

  • Wei Dai
  • Zhao Liu
  • Guozhen Lu


In this paper, let α be any real number between 0 and 2, we study the Dirichlet problem for semi-linear elliptic system involving the fractional Laplacian:
$$\left \{\begin {array}{l} (-{\Delta })^{\alpha /2}u(x)=v^{q}(x),\ \ \ x\in \mathbb {R}^{n}_{+},\\ (-{\Delta })^{\alpha /2}v(x)=u^{p}(x),\ \ \ x\in \mathbb {R}^{n}_{+},\\ u(x)=v(x)=0,\ \ \ \ \ \ \ \ \ \ x\notin \mathbb {R}^{n}_{+}. \end {array}\right .\label {elliptic} $$
We will first establish the equivalence between PDE problem (1) and the corresponding integral equation (IE) system (Lemma 2). Then we use the moving planes method in integral forms to establish our main theorem, a Liouville type theorem for the integral system (Theorem 3). Then we conclude the Liouville type theorem for the above differential system involving the fractional Laplacian (Corollary 4).


Liouville type theorem Dirichlet problem Half space Method of moving planes in integral forms Nonexistence Rotational symmetry The fractional Laplacian 

Mathematics Subject Classification (2010)

Primary: 35R11; Secondary: 35B53 45G15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bianchi, G.: Non-existence of positive solutions to semilinear elliptic equations in \(\mathbb {R}^{n}\) and \(\mathbb {R}^{n}_{+}\) through the method of moving plane. Comm. Partial Differential Equations 22, 1671–1690 (1997)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cabré, X., Tan, J.: Positive solutions of nonlinear problems invoving the square root of Laplacian. Adv. Math. 224, 2052–2093 (2010)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Caffarelli, L., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equation with critical Sobolev growth. Comm. Pure Appl. Math. 42, 271–297 (1989)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations 32, 1245–1260 (2007)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chen, W., Fang, Y., Yang, R.: Liouville theorems involving the fractional Laplacian on a half space. Adv. Math. 274, 167–198 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen, W., Li, C.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63, 615–622 (1991)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chen, W., Li, C.: An integral system and the Lane-Emden conjecture. Discrete Contin. Dyn. Syst. 24(4), 1167–1184 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Chen, W., Li, C., Ou, B.: Classification of solutions for an integral equation. Comm. Pure Appl. Math. 59, 330–343 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Chen, W., Li, C., Ou, B.: Classification of solutions for a system of integral equations. Comm. Partial Differential Equations 30, 59–65 (2005)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chen, W., Li, C., Zhang, L., Cheng, T.: A Liouville theorem for α-harmonic functions in \(\mathbb {R}_{+}^{n}\). Discrete Contin. Dyn. Syst. 36, 1721–1736 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fang, Y., Chen, W.: A Liouville type theorem for poly-harmonic Dirichlet problems in a half space. Adv. Math. 229, 2835–2867 (2012)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Fall, M.M., Weth, T.: Nonexistence results for a class of fractional elliptic boundary value problems. J. Funct. Anal. 263, 2205–2227 (2012)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Fall, M.M., Weth, T.: Monotonicity and nonexistence results for some fractional elliptic problems in the half space. Comm. Contemp. Math. 18(1), 55–79 (2016)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Guo, Y., Liu, J.: Liouville-type theorems for polyharmonic equations in \(\mathbb {R}^{N} \) and in \(\mathbb {R}_{+}^{n}\). Proc. Roy. Edinburgh Sect. A. 138, 339–359 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gidas, B., Ni, W., Nirenberg, L.: Symmetry of Positive Solutions of Nonlinear Elliptic Equations in \(\mathbb {R}^{n}\), Mathematical Analysis and Applications, Vol. 7A of the Book Series Advances in Mathematics. Academic Press, New York (1981)Google Scholar
  16. 16.
    Gidas, B., Ni, W., Nirenberg, L.: Symmetry and related properties via maximum principle. Comm. Math. Phys. 68, 209–243 (1979)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Gidas, B., Spruck, J.: A priori bounds for positive solutions of nonlinear elliptic equations. Comm. Partial Differential Equations 6, 883–901 (1981)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Huang, X., Li, D., Wang, L.: Symmetry and monotonicity of integral equation systems. Nonlinear Anal. Real World Appl. 12(6), 3515–3530 (2011)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kulezycki, T.: Properties of green function of symmetric stable processes. Probab. Math. Statist. 17, 339–364 (1997)MathSciNetGoogle Scholar
  20. 20.
    Li, C.: Local asymptotic symmetry of singular solutions to nonlinear elliptic equations. Invent. Math. 123, 221–231 (1996)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Liu, Z., Dai, W.: A Liouville type theorem for poly-harmonic system with Dirichlet boundary conditions in a half space. Adv. Nonlinear Stud. 15, 117–134 (2015)MathSciNetMATHGoogle Scholar
  22. 22.
    Lu, G., Wang, P., Zhu, J.: Liouville-type theorems and decay estimates for solutions to higher order elliptic equations. Ann. Inst. H. Poincar Anal. Non Linaire 29(5), 653–665 (2012)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Lu, G., Zhu, J.: Symmetry and regularity of extremals of an integral equation related to the Hardy-Sobolev inequality. Calc. Var. PDEs. 42, 563–577 (2011)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Lu, G., Zhu, J.: Axial symmetry and regularity of solutions to an integral equations in a half-space. Pacific J. Math. 253, 455–473 (2011)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Lu, G., Zhu, J.: The maximum principles and symmetry results for viscosity solutions of fully nonlinear equations. J. Diff. Eqs. 258(6), 2054–2079 (2015)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Quaas, A., Xia, A.: Liouville type theorems for nonlinear elliptic equations and systems involving fractional Laplacian in the half space. Calc. Var. Part. Diff. Eqns. 52(3), 641–659 (2015)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Reichel, W., Weth, T.: A prior bounds and a Liouville theorem on a half-space for higher-order elliptic Dirichlet problems. Math. Z. 261, 805–827 (2009)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 60, 67–112 (2007)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.School of Mathematics and Systems ScienceBeihang University (BUAA)BeijingPeople’s Republic of China
  2. 2.School of Mathematics and Computer ScienceJiangxi Science and Technology Normal UniversityNanchangPeople’s Republic of China
  3. 3.Department of MathematicsUniversity of ConnecticutStorrsUSA

Personalised recommendations