Potential Analysis

, Volume 46, Issue 3, pp 569–588

# Liouville Type Theorems for PDE and IE Systems Involving Fractional Laplacian on a Half Space

Article

## Abstract

In this paper, let α be any real number between 0 and 2, we study the Dirichlet problem for semi-linear elliptic system involving the fractional Laplacian:
$$\left \{\begin {array}{l} (-{\Delta })^{\alpha /2}u(x)=v^{q}(x),\ \ \ x\in \mathbb {R}^{n}_{+},\\ (-{\Delta })^{\alpha /2}v(x)=u^{p}(x),\ \ \ x\in \mathbb {R}^{n}_{+},\\ u(x)=v(x)=0,\ \ \ \ \ \ \ \ \ \ x\notin \mathbb {R}^{n}_{+}. \end {array}\right .\label {elliptic}$$
(1)
We will first establish the equivalence between PDE problem (1) and the corresponding integral equation (IE) system (Lemma 2). Then we use the moving planes method in integral forms to establish our main theorem, a Liouville type theorem for the integral system (Theorem 3). Then we conclude the Liouville type theorem for the above differential system involving the fractional Laplacian (Corollary 4).

### Keywords

Liouville type theorem Dirichlet problem Half space Method of moving planes in integral forms Nonexistence Rotational symmetry The fractional Laplacian

### Mathematics Subject Classification (2010)

Primary: 35R11; Secondary: 35B53 45G15

## Preview

### References

1. 1.
Bianchi, G.: Non-existence of positive solutions to semilinear elliptic equations in $$\mathbb {R}^{n}$$ and $$\mathbb {R}^{n}_{+}$$ through the method of moving plane. Comm. Partial Differential Equations 22, 1671–1690 (1997)
2. 2.
Cabré, X., Tan, J.: Positive solutions of nonlinear problems invoving the square root of Laplacian. Adv. Math. 224, 2052–2093 (2010)
3. 3.
Caffarelli, L., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equation with critical Sobolev growth. Comm. Pure Appl. Math. 42, 271–297 (1989)
4. 4.
Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations 32, 1245–1260 (2007)
5. 5.
Chen, W., Fang, Y., Yang, R.: Liouville theorems involving the fractional Laplacian on a half space. Adv. Math. 274, 167–198 (2015)
6. 6.
Chen, W., Li, C.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63, 615–622 (1991)
7. 7.
Chen, W., Li, C.: An integral system and the Lane-Emden conjecture. Discrete Contin. Dyn. Syst. 24(4), 1167–1184 (2009)
8. 8.
Chen, W., Li, C., Ou, B.: Classification of solutions for an integral equation. Comm. Pure Appl. Math. 59, 330–343 (2006)
9. 9.
Chen, W., Li, C., Ou, B.: Classification of solutions for a system of integral equations. Comm. Partial Differential Equations 30, 59–65 (2005)
10. 10.
Chen, W., Li, C., Zhang, L., Cheng, T.: A Liouville theorem for α-harmonic functions in $$\mathbb {R}_{+}^{n}$$. Discrete Contin. Dyn. Syst. 36, 1721–1736 (2016)
11. 11.
Fang, Y., Chen, W.: A Liouville type theorem for poly-harmonic Dirichlet problems in a half space. Adv. Math. 229, 2835–2867 (2012)
12. 12.
Fall, M.M., Weth, T.: Nonexistence results for a class of fractional elliptic boundary value problems. J. Funct. Anal. 263, 2205–2227 (2012)
13. 13.
Fall, M.M., Weth, T.: Monotonicity and nonexistence results for some fractional elliptic problems in the half space. Comm. Contemp. Math. 18(1), 55–79 (2016)
14. 14.
Guo, Y., Liu, J.: Liouville-type theorems for polyharmonic equations in $$\mathbb {R}^{N}$$ and in $$\mathbb {R}_{+}^{n}$$. Proc. Roy. Edinburgh Sect. A. 138, 339–359 (2008)
15. 15.
Gidas, B., Ni, W., Nirenberg, L.: Symmetry of Positive Solutions of Nonlinear Elliptic Equations in $$\mathbb {R}^{n}$$, Mathematical Analysis and Applications, Vol. 7A of the Book Series Advances in Mathematics. Academic Press, New York (1981)Google Scholar
16. 16.
Gidas, B., Ni, W., Nirenberg, L.: Symmetry and related properties via maximum principle. Comm. Math. Phys. 68, 209–243 (1979)
17. 17.
Gidas, B., Spruck, J.: A priori bounds for positive solutions of nonlinear elliptic equations. Comm. Partial Differential Equations 6, 883–901 (1981)
18. 18.
Huang, X., Li, D., Wang, L.: Symmetry and monotonicity of integral equation systems. Nonlinear Anal. Real World Appl. 12(6), 3515–3530 (2011)
19. 19.
Kulezycki, T.: Properties of green function of symmetric stable processes. Probab. Math. Statist. 17, 339–364 (1997)
20. 20.
Li, C.: Local asymptotic symmetry of singular solutions to nonlinear elliptic equations. Invent. Math. 123, 221–231 (1996)
21. 21.
Liu, Z., Dai, W.: A Liouville type theorem for poly-harmonic system with Dirichlet boundary conditions in a half space. Adv. Nonlinear Stud. 15, 117–134 (2015)
22. 22.
Lu, G., Wang, P., Zhu, J.: Liouville-type theorems and decay estimates for solutions to higher order elliptic equations. Ann. Inst. H. Poincar Anal. Non Linaire 29(5), 653–665 (2012)
23. 23.
Lu, G., Zhu, J.: Symmetry and regularity of extremals of an integral equation related to the Hardy-Sobolev inequality. Calc. Var. PDEs. 42, 563–577 (2011)
24. 24.
Lu, G., Zhu, J.: Axial symmetry and regularity of solutions to an integral equations in a half-space. Pacific J. Math. 253, 455–473 (2011)
25. 25.
Lu, G., Zhu, J.: The maximum principles and symmetry results for viscosity solutions of fully nonlinear equations. J. Diff. Eqs. 258(6), 2054–2079 (2015)
26. 26.
Quaas, A., Xia, A.: Liouville type theorems for nonlinear elliptic equations and systems involving fractional Laplacian in the half space. Calc. Var. Part. Diff. Eqns. 52(3), 641–659 (2015)
27. 27.
Reichel, W., Weth, T.: A prior bounds and a Liouville theorem on a half-space for higher-order elliptic Dirichlet problems. Math. Z. 261, 805–827 (2009)
28. 28.
Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 60, 67–112 (2007)