Potential Analysis

, Volume 46, Issue 3, pp 463–484 | Cite as

Weak Type (1,1) Bounds for Some Operators Related to the Laplacian with Drift on Real Hyperbolic Spaces

  • Hong-Quan Li
  • Peter Sjögren
Open Access


The setting of this work is the n-dimensional hyperbolic space \(\mathbb {R}^{+} \times \mathbb {R}^{n-1}\), where the Laplacian is given a drift in the \(\mathbb {R}^{+}\) direction. We consider the operators defined by the horizontal Littlewood-Paley-Stein functions for the heat semigroup and the Poisson semigroup, and also the Riesz transforms of order 1 and 2. These operators are known to be bounded on \(L^{p},\; 1<p<\infty \), for the relevant measure. We show that most of the Littlewood-Paley-Stein operators and all the Riesz transforms are also of weak type (1,1). But in some exceptional cases, we disprove the weak type (1,1).


Littlewood-Paley-Stein function Riesz transform Laplacian with drift Real hyperbolic space 

Mathematics Subject Classification (2010)

Primary 42B25 Secondary 58J35 


  1. 1.
    Anker, J.-P.: Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces. Duke Math. J. 65, 257–297 (1992)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Anker, J.-P., Damek, E., Yacoub, C.: Spherical analysis on harmonic AN groups. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23(4), 643–679 (1996)MathSciNetMATHGoogle Scholar
  3. 3.
    Coulhon, T., Duong, X.-T., Li, X.-D.: Littlewood-Paley-Stein functions on complete Riemannian manifolds for 1=p=2. Studia Math. 154, 37–57 (2003)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cowling, M.E., Gaudry, G., Giulini, S., Mauceri, G.: Weak type (1,1) estimates for heat kernel maximal functions on Lie groups. Trans. Amer. Math. Soc. 323, 637–649 (1991)MathSciNetMATHGoogle Scholar
  5. 5.
    Damek, E., Ricci, F.: Harmonic analysis on solvable extensions of H-type groups. J. Geom. Anal. 2, 213–248 (1992)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge (1989)Google Scholar
  7. 7.
    Davies, E.B., Mandouvalos, N.: Heat kernel bounds on hyperbolic space and Kleinian groups. Proc. Lond. Math. Soc. 57(3), 182–208 (1988)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Mathematical Notes, vol. 28. Princeton University Press; University of Tokyo Press, Princeton; Tokyo (1982)Google Scholar
  9. 9.
    Grigor’yan, A.: Heat Kernel and Analysis on Manifolds. AMS/IP Studies in Advanced Mathematics, vol. 47. American Mathematical Society; International Press, Providence; Boston (2009)Google Scholar
  10. 10.
    Hebisch, W., Steger, T.: Multipliers and singular integrals on exponential growth groups. Math. Z. 245, 37–61 (2003)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Li, H.-Q.: La fonction maximale de Hardy-Littlewood sur une classe d’espaces métriques mesurables. C. R. Math. Acad. Sci. Paris 338, 31–34 (2004)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Li, H.-Q.: La fonction maximale non centrée de Hardy-Littlewood sur les variétiés de type cuspidales. J. Funct. Anal. 229, 155–183 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Li, H.-Q.: Les fonctions maximales de Hardy-Littlewood pour des mesures sur les variétés cuspidales. J. Math. Pures Appl. 88, 261–275 (2007)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Li, H.-Q.: Estimations optimales du noyau de la chaleur sur les variétés cuspidales. Potential Anal. 27, 225–249 (2007)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Li, H.-Q.: Centered Hardy-Littlewood maximal function on hyperbolic spaces, p>1. PreprintGoogle Scholar
  16. 16.
    Li, H.-Q., Sjögren, P., Wu, Y.-R.: Weak type (1,1) of some operators for the Laplacian with drift. Math. Z. 282, 623–633 (2016)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Lohoué, N., Mustapha, S.: Sur les transformées de Riesz dans le cas du Laplacien avec drift. Trans. Amer. Math. Soc. 356, 2139–2147 (2004)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Sjögren, P.: An estimate for a first-order Riesz operator on the affine group. Trans. Amer. Math. Soc. 351, 3301–3314 (1999)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Sjögren, P., Vallarino, M.: Boundedness from H 1 to L 1 of Riesz transforms on a Lie group of exponential growth. Ann. Inst. Fourier 58, 1117–1151 (2008)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Stein, E.M.: Topics in Harmonic Analysis Related to the Littlewood-Paley Theory. Ann. of Math. Stud., vol. 63. Princeton University Press, Princeton (1970)Google Scholar
  21. 21.
    Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970)Google Scholar
  22. 22.
    Strömberg, J.O.: Weak type L 1 estimates for maximal functions on noncompact symmetric spaces. Ann. Math. 114, 115–126 (1981)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.School of Mathematical SciencesFudan UniversityShanghaiChina
  2. 2.Mathematical SciencesUniversity of GothenburgGöteborgSweden
  3. 3.Mathematical SciencesChalmers University of TechnologyGöteborgSweden

Personalised recommendations