Potential Analysis

, Volume 46, Issue 1, pp 55–62 | Cite as

Dirichlet’s Problem with Entire Data Posed on an Ellipsoidal Cylinder



We consider the Dirichlet problem for Laplace’s equation with real-analytic data posed on the boundary of a cylinder. If the base of the cylinder is an ellipsoid and if the data function is an entire function of order less than 1, we show that there is an entire solution.


Dirichlet problem Fischer operator Ellipsoid 

Mathematics Subject Classifications (2010)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armitage, D.: The Dirichlet problem when the boundary function is entire. J. Math. Anal. Appl. 291, 565–577 (2004)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Armitage, D., Gardiner, S.: Classical Potential Theory. Springer, London (2001)CrossRefMATHGoogle Scholar
  3. 3.
    Brelot, M., Choquet, G.: Polynômes harmoniques et polyharmoniques, Deuxième colloque sur les équations aux dérivées partielles. Bruxelles, 45–66 (1954)Google Scholar
  4. 4.
    Fischer, E: Uber die Differentiationsprozesse der Algebra. J. für Math. 148, 1–78 (1917)MATHGoogle Scholar
  5. 5.
    Gardiner, S., Render, H.: Harmonic functions which vanish on a cylindrical surface, J. Math. Anal. Appl., available online September 3 2015 doi: 10.1016/j.jmaa.2015.08.077 (to appear in print)
  6. 6.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (1977)CrossRefMATHGoogle Scholar
  7. 7.
    Khavinson, D.: On reflection of harmonic functions in surfaces of revolution. Complex Var. 17, 7–14 (1991)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Khavinson, D., Lundberg, E.: The search for singularities of solutions to the Dirichlet problem: Recent developments. CRM Proc. Lect. Notes 51, 121–132 (2010)MathSciNetMATHGoogle Scholar
  9. 9.
    Khavinson, D., Lundberg, E.: A tale of ellipsoids in potential theory. Not. AMS 61, 148–156 (2014)MathSciNetMATHGoogle Scholar
  10. 10.
    Khavinson, D., Lundberg, E., Render, H.: The Dirichlet problem for the slab with entire data and a difference equation for harmonic functions. Canad. Math. Bull. (to appear), preprint: arXiv:1602.01823
  11. 11.
    Khavinson, D., Shapiro, H.S.: Dirichlet’s Problem when the data is an entire function. Bull. London Math. Soc. 24, 456–468 (1992)Google Scholar
  12. 12.
    Miyamoto, I.: A type of uniquenes of solutions for the Dirichlet problem on a cylinder. Tôhoku Math. J. 48, 267–292 (1996)Google Scholar
  13. 13.
    Ramachandran, K.: Asymptotic behavior of positive harmonic functions in certain unbounded domains, Ph.D. thesis, Purdue Univ. (2014)Google Scholar
  14. 14.
    Render, H.: Real Bargmann spaces, Fischer pairs and sets of uniqueness for polyharmonic functions. Duke Math. J. 142, 313–352 (2008)CrossRefMATHGoogle Scholar
  15. 15.
    Render, H.: Cauchy, Goursat, and Dirichlet Problems for holomorphic partial differential equations. Comput. Methods Funct. Theory 10, 519–554 (2011)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Shapiro, H.S.: An algebraic theorem of E. Fischer and the Holomorphic Goursat Problem. Bull. London Math. Soc 21, 513–537 (1989)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Yoshida, H.: Harmonic majorization of a subharmonic function on a cone or on a cylinder. Pac. J. Math. 148, 369–395 (1991)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Dmitry Khavinson
    • 2
  • Erik Lundberg
    • 1
  • Hermann Render
    • 3
  1. 1.Florida Atlantic UniversityBoca RatonUSA
  2. 2.University of South FloridaTampaUSA
  3. 3.University College DublinDublinIreland

Personalised recommendations