Skip to main content
Log in

Equilibrium Diffusion on the Cone of Discrete Radon Measures

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Let \({\mathbb {K}(\mathbb {R}^{d})}\) denote the cone of discrete Radon measures on \(\mathbb {R}^{d}\). There is a natural differentiation on \(\mathbb {K}(\mathbb {R}^{d})\): for a differentiable function \(F:\mathbb {K}(\mathbb {R}^{d})\to \mathbb {R}\), one defines its gradient \(\nabla ^{\mathbb {K}}F\) as a vector field which assigns to each \(\eta \in \mathbb {K}(\mathbb {R}^{d})\) an element of a tangent space \(T_{\eta }(\mathbb {K}(\mathbb {R}^{d}))\) to \(\mathbb {K}(\mathbb {R}^{d})\) at point η. Let \(\phi :\mathbb {R}^{d}\times \mathbb {R}^{d}\to \mathbb {R}\) be a potential of pair interaction, and let μ be a corresponding Gibbs perturbation of (the distribution of) a completely random measure on \(\mathbb {R}^{d}\). In particular, μ is a probability measure on \(\mathbb {K}(\mathbb {R}^{d})\) such that the set of atoms of a discrete measure \(\eta \in \mathbb {K}(\mathbb {R}^{d})\) is μ-a.s. dense in \(\mathbb {R}^{d}\). We consider the corresponding Dirichlet form

$$\mathcal{E}^{\mathbb{K}}(F,G)={\int}_{\mathbb K(\mathbb{R}^{d})}\langle\nabla^{\mathbb{K}} F(\eta), \nabla^{\mathbb{K}} G(\eta)\rangle_{T_{\eta}(\mathbb{K})}\,d\mu(\eta). $$

Integrating by parts with respect to the measure μ, we explicitly find the generator of this Dirichlet form. By using the theory of Dirichlet forms, we prove the main result of the paper: If d ≥ 2, there exists a conservative diffusion process on \(\mathbb {K}(\mathbb {R}^{d})\) which is properly associated with the Dirichlet form \(\mathcal {E}^{\mathbb {K}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberverio, S., Kondratiev, Yu.G., Röckner, M.: Analysis and geometry on configuration spaces. The Gibbsian case. J Func.Anal. 157, 242–291 (1998)

    Article  Google Scholar 

  2. Boothby, W.M.: An Introduction to differentiable manifolds and Riemannian geometry. Academic Press, San Diego (1975)

    MATH  Google Scholar 

  3. Daley, D. J., Vere-Jones, D.: An introduction to the theory of point processes. Vol. II. General theory and structure. Second edition, Springer, New York (2008)

  4. Dynkin, E.B.: Markov Processes. Springer, Berlin (1965)

    Book  MATH  Google Scholar 

  5. Fukushima, M.: Dirichlet Forms and Symmetric Markov Processes. North-Holland, Amsterdam (1980)

    Google Scholar 

  6. Hagedorn, D., Kondratiev, Y., Pasurek, T., Röckner, M.: Gibbs states over the cone of discrete measures. J. Funct. Anal. 264, 2550–2583 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hagedorn, D., Kondratiev, Y., Lytvynov, E., Vershik, A.: Laplace operators in gamma analysis, arXiv:1411.0162, to appear in Trends of Mathematics, Birkhäuser.

  8. Kallenberg, O.: Random measures. Fourth edition. Akademie-Verlag, Berlin Academic Press, London (1986)

  9. Kingman, J.F.C.: Completely random measures. Pacific. J. Math 21, 59–78 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kondratiev, Y., Lytvynov, E., Vershik, A.: Laplace operators on the cone of Radon measures, to appear in J. Funct. Anal.

  11. Kondratiev, Y., Lytvynov, Röckner, M.: Infinite interacting diffusion particles I: Equilibrium process and its scaling limit. Forum Math. 18, 9–43 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kuratowski, K.: Topology. Vol. I. Academic Press, New York–London Warsaw (1966)

    Google Scholar 

  13. Ma, Z.-M., Röckner, M.: An Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Springer, Berlin (1992)

    Book  Google Scholar 

  14. Ma, Z.-M., Röckner, M.: Construction of diffusions on configuration spaces. Osaka. J. Math 37, 273–314 (2000)

    MATH  Google Scholar 

  15. Nguyen, X.X., Zessin, H.: Integral and differentiable characterizations of the Gibbs process. Math. Nachr. 88, 105–115 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Putan, D.: Uniqueness of equilibrium states of some models of interacting particle systems. PhD Thesis, Universität Bielefeld, Bielefeld, available at http://pub.uni-bielefeld.de/publication/2691509 (2014)

  17. Röckner, M., Schmuland, B.: Quasi-regular Dirichlet forms: examples and counterexamples. Canad. J. Math. 47, 165–200 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Röckner, M., Schmuland, B.: A support property for infinite-dimensional interacting diffusion processes. C. R. Acad. Sci. Paris Sér. I Math 326, 359–364 (1998)

    Article  MATH  Google Scholar 

  19. Tsilevich, N., Vershik, A., Yor, M.: An infinite-dimensional analogue of the Lebesgue measure and distinguished properties of the gamma process. J. Funct. Anal 185, 274–296 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Lytvynov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conache, D., Kondratiev, Y.G. & Lytvynov, E. Equilibrium Diffusion on the Cone of Discrete Radon Measures. Potential Anal 44, 71–90 (2016). https://doi.org/10.1007/s11118-015-9499-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-015-9499-9

Keywords

Mathematical Subject Classification (2010)

Navigation