Advertisement

Potential Analysis

, Volume 44, Issue 1, pp 43–51 | Cite as

Furstenberg Transformations on Cartesian Products of Infinite-Dimensional Tori

  • P. A. Cecchi
  • Rafael Tiedra de Aldecoa
Article
  • 52 Downloads

Abstract

We consider in this note Furstenberg transformations on Cartesian products of infinite-dimensional tori. Under some appropriate assumptions, we show that these transformations are uniquely ergodic with respect to the Haar measure and have countable Lebesgue spectrum in a suitable subspace. These results generalise to the infinite-dimensional setting previous results of H. Furstenberg, A. Iwanik, M. Lemanzyk, D. Rudolph and the second author in the one-dimensional setting. Our proofs rely on the use of commutator methods for unitary operators and Bruhat functions on the infinite-dimensional torus.

Keywords

Furstenberg transformations Infinite-dimensional torus Commutator methods 

Mathematics Subject Classifications (2010)

28D10 37A30 37C40 58J51 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amrein, W.O.: Hilbert Space Methods in Quantum Mechanics. Fundamental Sciences. EPFL Press, Lausanne (2009)MATHGoogle Scholar
  2. 2.
    Amrein, W. O., de Monvel Boutet, A., Georgescu, V.: C 0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians, Volume 135 of Progress in Mathematics. Basel, Birkhäuser Verlag (1996)CrossRefMATHGoogle Scholar
  3. 3.
    Bendikov, A., Saloff-Coste, L.: On the sample paths of Brownian motions on compact infinite dimensional groups. Ann. Probab. 31(3), 1464–1493 (2003)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Bogachev, V. I.: Differentiable measures and the Malliavin calculus. J. Math. Sci. (New York) 87(4), 3577–3731 (1997). Analysis, 9CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Bruhat, F.: Distributions sur un groupe localement compact et applications à l’étude des représentations des groupes P-adiques. Bull. Soc. Math. France 89, 43–75 (1961)MathSciNetMATHGoogle Scholar
  6. 6.
    Cornfeld, I. P., Fomin, S. V., Sinai, Y. G.: Ergodic Theory, Volume 245 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York (1982). Translated from the Russian by A. B. SosinskiiGoogle Scholar
  7. 7.
    Fernández, C., Richard, S., de Aldecoa Tiedra, R.: Commutator methods for unitary operators. J. Spectr. Theory 3(3), 271–292 (2013)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Furstenberg, H.: Strict ergodicity and transformation of the torus. Amer. J. Math. 83, 573–601 (1961)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Greschonig, G.: Nilpotent extensions of Furstenberg transformations. Israel J. Math. 183, 381–397 (2011)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Iwanik, A., Lemanczyk, M., Rudolph, D.: Absolutely continuous cocycles over irrational rotations. Israel J. Math. 83(1–2), 73–95 (1993)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Ji, R.: On the crossed product C*-algebras associated with furstenberg transformations on tori. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)–State University of New York at Stony Brook (1986)Google Scholar
  12. 12.
    Osaka, H., Phillips, N. C.: Furstenberg transformations on irrational rotation algebras. Ergodic Theory Dynam. Systems 26(5), 1623–1651 (2006)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Reihani, K: K-theory of Furstenberg transformation group C *-algebras. Canad. J. Math. 65(6), 1287–1319 (2013)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Tiedra de Aldecoa, R.: Commutator criteria for strong mixing. to appear in Ergodic Theory Dynam. Systems, preprint on http://arxiv.org/abs/1406.5777
  15. 15.
    Tiedra de Aldecoa, R.: Commutator methods for the spectral analysis of uniquely ergodic dynamical systems. Ergodic Theory Dynam. Syst. 35(3), 944–967 (2015)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Departamento de Matemática y Ciencia de la ComputaciónUniversidad de Santiago de ChileEstación CentralChile
  2. 2.Facultad de MatemáticasPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations