Potential Analysis

, Volume 42, Issue 1, pp 229–246 | Cite as

Critical Points for a Functional Involving Critical Growth of Trudinger–Moser Type

  • João Marcos do Ó
  • Manassés de Souza
  • Everaldo de Medeiros
  • Uberlandio Severo


We establish the existence of critical points of leat energy for functionals associated with a class of singular quasilinear elliptic equations involving critical growth of Trudinger-Moser type. For this, in line with the Concentration–Compactness Principle due to P. -L. Lions (I. Rev. Mat. Iberoamericana 1, 145–201, 1985), we study the lack of compactness of Sobolev imbedding in Orlicz space defined in ℝ n (n ≥ 2).


Critical points Least energy Concentration-compactness principle Trudinger–Moser inequality 

Mathematics Subject Classifications (2010)

35J60 35J20 35B33 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adimurthi: Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-Laplacian. Ann. Scuola norm. Sup. Pisa Cl. Sci. 17, 393–413 (1990)MATHMathSciNetGoogle Scholar
  2. 2.
    Adimurthi, Sandeep, K.: A singular Moser–Trudinger embedding and its applications. NoDEA Nonlinear Differ. Equ. Appl. 13, 585–603 (2007)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Adimurthi, Yang, Y.: An interpolation of hardy inequality and Trudinger–moser inequality in ℝn and its applications. Int. Math. Res. Not. IMRN, 2394–2426 (2010)Google Scholar
  4. 4.
    Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations I. Existence of a ground state. Arch. Rational Mech. Anal. 82, 313–345 (1983)MATHMathSciNetGoogle Scholar
  5. 5.
    Cao, D. M.: Nontrivial solution of semilinear elliptic equation with critical exponent in ℝ2. Comm. Partial Differ. Equ. 17, 407–435 (1992)CrossRefMATHGoogle Scholar
  6. 6.
    Černý, R., Cianchi, A., Hencl, S.: Concentration-compactness principles for Moser-Trudinger inequalities: new results and proofs. Annali di Matematica Pura ed Applicata 192, 225–243 (2013)CrossRefMATHGoogle Scholar
  7. 7.
    de Figueiredo, D.G., do Ó, J.M., Ruf, B.: Elliptic equations and systems with critical Trudinger-moser nonlinearities. Discret. Contin. Dyn. Syst. 30, 455–476 (2011)CrossRefMATHGoogle Scholar
  8. 8.
    de Figueiredo, D.G., Miyagaki, O.H., Ruf, B.: Elliptic equations in ℝ2 with nonlinearities in the critical growth range. Calc. Var Partial Differ. Equ. 4, 139–153 (1995)CrossRefMathSciNetGoogle Scholar
  9. 9.
    de Morais Filho, D.C., Souto, M.A.S., do Ó, J.M.: A compactness embedding lemma, a principle of symmetric criticality and applications to elliptic problems. Proyecciones. 19, 1–17 (2000)CrossRefMathSciNetGoogle Scholar
  10. 10.
    de Souza, M.: On a singular elliptic problem involving critical growth in ℝn. NoDEA Nonlinear Differ. Equ. Appl. 18, 199–215 (2011)CrossRefMATHGoogle Scholar
  11. 11.
    de Souza, M., do Ó, J.M.: On singular Trudinger-moser type inequalities for unbounded domains and their best exponents. Potential Analysis 38, 1091–1101 (2013)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    de Souza, M., do Ó, J.M.: On a class of singular Trudinger-Moser type inequalities and its applications. Math. Nachr. 284, 1754–1776 (2011)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    do Ó, J.M.: Semilinear Dirichlet problems for the n−Laplacian in ℝn with nonlinearities in critical growth range. Differ. Integr. Equ. 9, 967–979 (1996)MATHGoogle Scholar
  14. 14.
    do Ó, J.M.: n-Laplacian equations in ℝn with critical growth. Abstr. Appl. Anal. 2, 301–315 (1997)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    do Ó, J.M., Medeiros, E., Severo, U.B.: A nonhomogeneous elliptic problem involving critical growth in dimension two. J. Math. Anal. Appl. 345, 286–304 (2008)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    do Ó, J.M., Medeiros, E., Severo, U.B.: On a quasilinear nonhomogeneous elliptic equation with critical growth in ℝn. J. Diff. Equat. 246, 1363–1386 (2009)CrossRefMATHGoogle Scholar
  17. 17.
    Díaz, J.I.: Nonlinear partial differential equations and free boundaries. Vol. I. Elliptic equations, research notes in mathematics, Edit. Pitman, Vol. 106. MA, Boston (1985)Google Scholar
  18. 18.
    Giacomoni, J., Sreenadh, K.: A multiplicity result to a nonhomogeneous elliptic equation in whole space ℝ2. Adv. Math. Sci. Appl. 15, 467–488 (2005)MATHMathSciNetGoogle Scholar
  19. 19.
    Lam, N., Lu, G.: Existence and multiplicity of solutions to equations of n-Laplacian type with critical exponential growth in ℝn. J. Funct. Anal. 262, 1132–1165 (2012)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Li, Y., Ruf, B.: A sharp Trudinger-Moser type inequality for unbounded domains in ℝn. Indiana Univ. Math. J. 57, 451–480 (2008)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoamericana 1, 145–201 (1985)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Kesavan, S.: Symmetrization and applications. Series in analysis, Vol. 3. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2006)Google Scholar
  23. 23.
    Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1971)CrossRefGoogle Scholar
  24. 24.
    Palais, R.S.: The principle of symmetric criticality. Comm. Math. Phys. 69, 19–30 (1979)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Panda, R.: Nontrivial solution of a quasilinear elliptic equation with critical growth in ℝn. Proc. Indian Acad. Sci. Math. Sci. 105, 425–444 (1995)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Pohozaev, S.I.: The Sobolev embedding in the case p l = n, Proceedings of the Technical Scientific Conference on Advances of Scientific Research 1964–1965. Mathematics Section. Moscov. Energet. Inst., 158–170 (1965)Google Scholar
  27. 27.
    Strauss, W.A.: Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55, 149–162 (1977)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Trudinger, N.S.: On the imbedding into Orlicz spaces and some applications. J. Math. Mech. 17, 473–484 (1967)MATHMathSciNetGoogle Scholar
  29. 29.
    Yang, Y.: Existence of positive solutions to quasi-linear elliptic equations with exponential growth in the whole Euclidean space. J. Funct. Anal. 262, 1679–1704 (2012)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Yang, Y.: Adams type inequalities and related elliptic partial differential equations in dimension four. J. Differ. Equ. 252, 2266–2295 (2012)CrossRefMATHGoogle Scholar
  31. 31.
    Yudovich, V.I.: Some estimates connected with integral operators and with solutions of elliptic equations. Dok. Akad. Nauk SSSR 138, 804–808 (1961)Google Scholar
  32. 32.
    Yudovich, V.I.: English tranlation in soviet math. Doklady 2, 746–749 (1961)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • João Marcos do Ó
    • 1
  • Manassés de Souza
    • 1
  • Everaldo de Medeiros
    • 1
  • Uberlandio Severo
    • 1
  1. 1.Departamento de MatemáticaUniversidade Federal da ParaíbaJoão PessoaBrazil

Personalised recommendations