Potential Analysis

, Volume 39, Issue 4, pp 325–340 | Cite as

Positive Curvature Property for Sub-Laplacian on Nilpotent Lie Group of Rank Two



In this note, we concentrate on the sub-Laplace operator on the nilpotent Lie group of rank two, which is the infinitesimal generator of the diffusion generated by n Brownian motions and their \(\frac{n(n-1)}2\) Lévy area processes, which is the simple extension of the sub-Laplacian on the Heisenberg group ℍ. In order to study contraction properties of the associated heat kernel, we show that, as in the cases of the Heisenberg group and the three Brownian motions model, the restriction of the sub-Laplace operator acting on radial functions (see Definition 3.5) satisfies a positive Ricci curvature condition (more precisely a CD(0, ∞ ) inequality), see Theorem 4.5, whereas the operator itself does not satisfy any CD(r, ∞ ) inequality. From this we may deduce some useful, sharp gradient bounds for the associated heat kernel. It can be seen a generalization of the paper (Qian, Bull Sci Math 135:262–278, 2011).


Γ2 curvature Heat kernel Gradient estimates Sub-Laplacian Nilpotent Lie groups 

Mathematics Subject Classifications (2010)

60J60 58J35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bakry D.: On Sobolev and logarithmic Sobolev inequalities for Markov semigroups. Taniguchi symposium. New trends in stochastic analysis (Charingworth, 1994), World Sci. Publ. River Edge, NJ, 1997: 43-75.Google Scholar
  2. 2.
    Bakry, D., Baudoin, F., Bonnefont, M., Chafaï, D.: On gradient bounds for the heat kernel on the Heisenberg group. J. Funct. Anal. 255, 1905–1938 (2008)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bakry, D., Baudoin, F., Bonnefont, M., Qian, B.: Subelliptic Li-Yau estimates on three dimensional model spaces. Potential Theory and Stochastics in Albac: Aurel Cornea Memorial Volume (2009)Google Scholar
  4. 4.
    Baudoin, F., Bonnefont, M.: The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds. Math. Zeit. 263, 647–672 (2009)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Baudoin, F., Bonnefont, M.: Log-Sobolev inequalities for subelliptic operators satisfying a generalized curvature dimension inequality. J. Funct. Anal. 262(6), 2646–2676 (2012)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Baudoin, F., Garofalo, N.: Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries. Arxiv:1101.3590
  7. 7.
    Beals, R., Gaveau B., Greiner, P.C.: Hamilton-Jacobi theory and the heat kernel on Heisenberg groups. J. Math. Pures Appl. 79(9), 633–689 (2000)MathSciNetMATHGoogle Scholar
  8. 8.
    Driver, B.K., Melcher, T.: Hypoelliptic heat kernel inequalities on the Heisenberg group. J. Funct. Anal. 221(2), 340–365 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Engoulatov, A.: A universal bound on the gradient of logtithm of the heat kernel for manifolds with bounded Ricci curvature. J. Funct. Anal. 238, 518–529 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gaveau B.: Principe de moindre action, propagation de la chaleur et estimees souselliptiques sur certains groupes nilpotents. Acta Math. 139 95–153 (1977)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Hu, J.Q., Li, H.Q.: Gradient estimates for the heat semigroup on H-type groups. Potential Anal. 33, 355–386 (2010)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Juillet, N.: Geometric inequalities and generalized Ricci bounds on the Heisenberg group. Int. Math. Res. Not. 13, 2347–2373 (2009)MathSciNetGoogle Scholar
  13. 13.
    Ledoux, M.: The geometric of Markov diffusion geretators, probability theroy. Ann. Fac. Sci. Toulouse Math. 9(6), 305–366 (2000)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Li, H.Q.: Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg. J. Funct. Anal. 236, 369–394 (2006)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Li, H.Q.: Esimations opitmale du noyau de la chaleur sur les groupes de Heisenberg. CRAS Ser. I 497–502 (2007)Google Scholar
  16. 16.
    Li, H.Q.: Estimations optimales du noyau de la chaleur sur les groupes de type Heisenberg. J. Reine Angew. Math. 646, 195–233 (2010)MathSciNetMATHGoogle Scholar
  17. 17.
    Li, H.Q.: Estimations asymptotiques du noyau de la chaleur pour l’operateur de Grushin. Comm. P. D. E. 37, 794–832 (2012)CrossRefMATHGoogle Scholar
  18. 18.
    Li, P., Yau, S.T.: On the parabolic kernel of the Schrödinger operator. Acta. Math. 156, 153–201 (1986)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Li, X.D.: Perelman’s entropy formula for theWitten Laplacian on Riemanian manifolds via Bakry-Emery Ricci curvature. Math. Ann. 353, 403–437 (2012)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Melcher, T.: Hypoelliptic heat kernel inequalities on Lie groups. Stoch. Proc. Anal. 118(3), 368–388 (2008)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Melcher, T.: Hypoelliptic heat kernel inequalities on Lie groups. Ph.D. thesis, UC San Diego, pp. 120 (2004)Google Scholar
  22. 22.
    Qian, B.: Gradient estimates for the heat kernels in the high dimensional Heisenberg groups. Chin. Ann. Math. 31B(3), 305–314 (2010)CrossRefGoogle Scholar
  23. 23.
    Qian, B.: Positive curvature for some hypoelliptic operators. Bull. Sci. Math. 135, 262–278 (2011)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Varopolous, N.Th., Saloff-Coste, L., Coulhon, Th.: Analysis and Geometry on Groups. Cambridge Tracts in Mathematics 100, Cambridge University Press (1992)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsChangshu Institute of TechnologyJiangsuChina
  2. 2.School of Mathematical SciencesFudan UniversityShanghaiChina

Personalised recommendations