Potential Analysis

, Volume 38, Issue 4, pp 1291–1331 | Cite as

Martingale Solution to Equations for Differential Type Fluids of Grade Two Driven by Random Force of Lévy Type

  • E. Hausenblas
  • P. A. Razafimandimby
  • M. Sango


In this article we study a system of nonlinear non-parabolic stochastic evolution equations driven by Lévy noise type. This system describes the motion of second grade fluids driven by random force. Global existence of a martingale solution is proved under general conditions on the noise. Since the coefficient of the noise does not satisfy a Lipschitz property, we could not prove any pathwise uniqueness result. We note that this is the first work dealing with a stochastic model for non-Newtonian fluids excited by external forces of Lévy noise type.


Second grade fluid Lévy noise Stochastic partial differential equations Poisson random measure Non-Newtonian fluids 

Mathematics Subject Classifications (2010)

Primary 60H15 60J75 Secondary 60G44 60G55 76M35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albeverio, S., Brzezńiak, Z., Wu, J.L.: Existence of global solutions and invariant measures for stochastic differential equations driven by Poisson type noise with non-Lipschitz coefficients. J. Math. Anal. Appl. 371(1), 309–322 (2010)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bensoussan, A.: Stochastic Navier–Stokes equations. Acta Appl. Math. 38, 267–304 (1995)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bensoussan, A., Temam, R.: Equations stochastiques du type Navier–Stokes. J. Funct. Anal. 13, 195–222 (1973)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bernard, J.M.: Weak and classical solutions of equations of motion for second grade fluids. Commun. Appl. Nonlinear Anal 5, 1–32 (1998)MathSciNetMATHGoogle Scholar
  5. 5.
    Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley Series in Probability and Statistics: Probability and Statistics. A Wiley-Interscience Publication. Wiley, New York (1999)Google Scholar
  6. 6.
    Brookes, M.: The matrix reference manual. [online] (2011). Accessed 27 July 2012
  7. 7.
    Brzeźniak, Z., Hausenblas, E.: Maximal regularity for stochastic convolutions driven by Lévy processes. Probab. Theory Relat. Fields 145(3–4), 615–637 (2009)MATHCrossRefGoogle Scholar
  8. 8.
    Brzeźniak, Z., Hausenblas, E.: Martingale solutions for Stochastic equation of reaction diffusion type driven by Levy noise or Poisson random measure. Preprint (2009). arXiv:1010.5933
  9. 9.
    Brzeźniak, Z., Hausenblas, E.: Uniqueness in law of the Itô integral with respect to Lévy Noise. In: Seminar on Stochastic Analysis, Random Fields and Applications VI Progress in Probability, vol. 63, part 1, pp. 37–57 (2011)Google Scholar
  10. 10.
    Brzeźniak, Z., Zabczyk, J.: Regularity of Ornstein–Uhlenbeck processes driven by a Lévy white noise. Potential Anal. 32(2), 153–188 (2010)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Brzeźniak, Z., Goldys, B., Imkeller, P., Peszat, S., Priola E., Zabczyk, J.: Time irregularity of generalized Ornstein–Uhlenbeck processes. C. R. Math. Acad. Sci. Paris 348(5–6), 273–276 (2010)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Busuioc, A.V.: On second grade fluids with vanishing viscosity. C. R. Acad. Paris, Série I 328(12), 1241–1246 (1999)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Busuioc, A.V., Ratiu, T.S.: The second grade fluid and averaged Euler equations with Navier-slip boundary conditions. Nonlinearity 16, 1119–1149 (2003)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Chen, S., Foias, C., Titi, E., Wynne, S.: A connection between the Camassa–Holm equations and turbulent flows in channels and pipes. Phys. Fluids 11, 2343–2353 (1999)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Chueshov, I., Millet, A.: Stochastic 2D hydrodynamical type systems: well posedness and large deviations. Appl. Math. Optim. 61(3), 379–420 (2010)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Cioranescu, D., Girault, V.: Weak and classical solutions of a family of second grade fluids. Int. J. Non-Linear Mech. 32(2), 317–335 (1997)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Cioranescu, D., Ouazar, E.H.: Existence and uniqueness for fluids of second grade. In: Nonlinear Partial Differential Equations, vol. 109, pp. 178–197. Collège de France Seminar, Pitman (1984)Google Scholar
  18. 18.
    Cioranescu, D., Ouazar, E.H.: Existence et unicité pour les fluides de grade deux. C. R. Acad. Sci. Paris, Série I 298(13), 285–287 (1984)MATHGoogle Scholar
  19. 19.
    Deugoue, G., Sango, M.: On the stochastic 3D Navier–Stokes-α model of fluids turbulence. Abstr. Appl. Anal. Art. ID 723236, 27 pp. (2009)Google Scholar
  20. 20.
    Deugoué, G., Razafimandimby, P.A., Sango, M.: On the 3-D stochastic magnetohydrodynamic-α model. Stoch. Process. Their Appl. 122, 2211–2248 (2012)MATHCrossRefGoogle Scholar
  21. 21.
    Dong, Z., Zhai, J.: Martingale solutions and Markov selection of stochastic 3D Navier–Stokes equations with jump. J. Differ. Equ. 250, 2737–2778 (2011)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Dunn, J.E., Fosdick, R.L.: Thermodynamics, stability and boundedness of fluids of complexity two and fluids of second grade. Arch. Ration. Mech. Anal. 56, 191–252 (1974)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Dunn, J.E., Rajagopal, K.R.: Fluids of differntial type: Critical review and thermodynamic analysis. Int. J. Eng. Sci. 33, 668–729 (1995)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ethier, S., Kurtz, T.: Markov Processes: Characterization and Convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York (1986)Google Scholar
  25. 25.
    Flandoli, F., Gatarek, D.: Martingale and stationary solutions for stochastic Navier–Stokes equations. Probab. Theory Relat. Fields 102, 367–391 (1995)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Foias, C., Holm, D.D., Titi, E.S.: The Navier–Stokes-alpha model of fluid turbulence. Advances in nonlinear mathematics and science. Physica D 152–153, 505–519 (2001)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Fosdick, R.L., Rajagopal, K.R.: Anomalous features in the model of second grade fluids. Arch. Ration. Mech. Anal. 70, 145–152 (1978)MathSciNetGoogle Scholar
  28. 28.
    Fosdick, R.L., Truesdell, C.: Universal flows in the simplest theories of fluids. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 4(4), 323–341 (1977)MathSciNetMATHGoogle Scholar
  29. 29.
    Gyöngy, I., Krylov, N.V.: On stochastics equations with respect to semimartingales. II. Itô formula in Banach spaces. Stochastics 6, 153–173 (1981/1982)MATHCrossRefGoogle Scholar
  30. 30.
    Holm, D.D., Marsden, J.E., Ratiu, T.: The Euler–Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137, 1–81 (1998)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Holm, D.D., Marsden, J.E., Ratiu, T.: Euler–Poincaré models of ideal fluids with nonlinear dispersion. Phys. Rev. Lett. 349, 4173–4177 (1998)CrossRefGoogle Scholar
  32. 32.
    Iftimie, D.: Remarques sur la limite α→0 pour les fluides de grade 2. C. R. Acad. Sci. Paris, Ser. I 334, 83–86 (2002)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes. In: North-Holland Mathematical Library, vol. 24, 2nd edn. North-Holland, Amsterdam (1989)Google Scholar
  34. 34.
    Imkeller, P., Pavlyukevich, I.: First exit times of SDEs driven by stable Lévy processes. Stoch. Process. Their Appl. 116, 611–642 (2006)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Jacod, J. Shiryaev, A.: Limit theorems for stochastic processes. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288, 2nd edn. Springer, Berlin (2003)Google Scholar
  36. 36.
    Joffe, A., Métivier, M.: Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv. Appl. Probab. 18, 20–65 (1986)MATHCrossRefGoogle Scholar
  37. 37.
    Kallenberg, O.: Foundations of modern probability. In: Probability and its Applications (New York). Springer, New York (1997)Google Scholar
  38. 38.
    Kushner, H.J.: Numerical Methods for Controlled Stochastic Delay Systems. Birkhäuser, Boston (2008)MATHCrossRefGoogle Scholar
  39. 39.
    Métivier, M.: Stochastic Partial Differential Equations in Infinite Dimensional Spaces. Scuola Normale Superiore, Pisa (1988)MATHGoogle Scholar
  40. 40.
    Mikulevicius, R., Rozovskii, B.L.: Martingale problems for stochastic PDE’s. In: Stochastic Partial Differential Equations: Six Perspectives. Math. Surveys Monogr., vol. 64, pp. 243–325. Amer. Math. Soc., Providence (1999)Google Scholar
  41. 41.
    Mueller, C.: The heat equation with Lévy noise. Stoch. Process. Their Appl. 74, 67–82 (1998)MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Mytnik, L.: Stochastic partial differential equation driven by stable noise. Probab. Theory Relat. Fields 123, 157–201 (2002)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Noll, W., Truesdell, C.: The nonlinear field theory of mechanics. In: Handbuch der Physik, vol. III. Springer, Berlin (1975)Google Scholar
  44. 44.
    Parthasarathy, K.R.: Probability measures on metric spaces. In: Probability and Mathematical Statistics, vol. 3. Academic, New York (1967)Google Scholar
  45. 45.
    Peszat, S., Zabczyk, J.: Stochastic partial differential equations with Levy Noise. An evolution equation approach. In: Encyclopedia of Mathematics and its Applications, vol. 113. Cambridge University Press (2007)Google Scholar
  46. 46.
    Rajagopal, K.R., Truesdell, C.A.: An introduction to the mechanics of fluids. In: Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (2000)Google Scholar
  47. 47.
    Razafimandimby, P.A: Some mathematical problems in the dynamics of stochastic second-grade fluids. Ph.D. Thesis, University of Pretoria (2010)Google Scholar
  48. 48.
    Razafimandimby, P.A., Sango, M.: Weak solutions of a stochastic model for two-dimensional second grade fluids. Boundary Value Problems 2010, Article ID 636140, 47 pp. (2010). doi: 10.1155/2010/636140
  49. 49.
    Razafimandimby, P.A., Sango, M.: Asymptotic behavior of solutions of stochastic evolution equations for second grade fluids. C R. Math. Acad. Sci. Paris 348, 787–790 (2010)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Razafimandimby, P.A., Sango, M.: Strong solution for a stochastic model of two-dimensional second grade fluids: existence, uniqueness and asymptotic behavior. Nonlinear Anal. 75, 4251–4270 (2012)MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Rivlin, R.S.: The relation between the flow of non-Newtonian fluids and turbulent Newtonian fluids. Q. Appl. Math. 15, 212–215 (1957).MathSciNetMATHGoogle Scholar
  52. 52.
    Sango, M.: Weak solutions for a doubly degenerate quasilinear parabolic equation with random forcing. Discrete Contin. Dyn. Syst. Ser. B 7(4), 885–905 (2007)MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Sango, M.: Magnetohydrodynamic turbulent flows: existence results. Phys. D 239(12), 912–923 (2010)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Shkoller, S.: Geometry and curvature of diffeomorphism groups with H 1 metric and hydrodynamics. J. Funct. Anal. 160, 337–365 (1998)MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Shkoller, S.: Smooth global Lagrangian flow for the 2D Euler and second-grade fluid equations. Appl. Math. Lett. 14, 539–543 (2001)MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Situ, R.: Theory of stochstic differential equations with jumps and applications. In: Mathematical and Analytical Techniques with Applications to Engineering. Springer, New York (2005)Google Scholar
  57. 57.
    Solonnikov, V.A.: On general boundary problems for systems which are elliptic in the sense of A. Douglis and L. Nirenberg. II. Proc. Steklov Inst. Math. 92, 269–339 (1968)Google Scholar
  58. 58.
    Temam, R.: Navier–Stokes Equations. North-Holland (1979)Google Scholar
  59. 59.
    Truesdell, C.A.: A first course in rational continuum mechanics. Vol. 1. General concepts. In: Pure and Applied Mathematics, vol. 71, 2nd edn. Academic Press, Boston (1991)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • E. Hausenblas
    • 1
  • P. A. Razafimandimby
    • 1
    • 2
  • M. Sango
    • 2
  1. 1.Department of Mathematics and Information TechnologyMontan University LeobenLeobenAustria
  2. 2.Department of Mathematics and Applied MathematicsUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations