Potential Analysis

, Volume 38, Issue 2, pp 397–432 | Cite as

Equilibrium Problems for Infinite Dimensional Vector Potentials with External Fields

  • Natalia Zorii


We consider a minimal energy problem with an external field over noncompact classes of infinite dimensional vector measures \((\mu^i)_{i\in I}\) on a locally compact space. The components μ i are positive measures normalized by \(\int g_i\,d\mu^i=a_i\) (where a i and g i are given) and supported by closed sets A i with the sign + 1 or − 1 prescribed such that A i  ∩ A j  = ∅ whenever \({\rm sign}\,A_i\ne{\rm sign}\,A_j\), and the law of interaction between μ i , i ∈ I, is determined by the matrix \(\bigl({\rm sign}\,A_i\,{\rm sign}\,A_j\bigr)_{i,j\in I}\). For positive definite kernels satisfying Fuglede’s condition of consistency, sufficient conditions for the existence of equilibrium measures are established and properties of their uniqueness, vague compactness, and strong and vague continuity are studied. Examples illustrating the sharpness of the sufficient conditions are provided. We also obtain variational inequalities for the weighted equilibrium potentials, single out their characteristic properties, and analyze continuity of the equilibrium constants. The results hold, e.g., for classical kernels in \(\mathbb R^n\), \(n\geqslant 2\), which is important in applications.


Vector potentials of infinite dimensions Minimal energy problems for vector measures with external fields Condensers Completeness theorem for vector measures 

Mathematics Subject Classification (2010)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bourbaki, N.: Elements of Mathematics, General Topology, chapters 1–4. Springer, Berlin (1989)MATHCrossRefGoogle Scholar
  2. 2.
    Bourbaki, N.: Elements of Mathematics, Integration, chapters 1–6. Springer, Berlin (2004)CrossRefGoogle Scholar
  3. 3.
    Brelot, M.: On Topologies and Boundaries in Potential Theory. Lectures Notes in Math., vol. 175. Springer, Berlin (1971)Google Scholar
  4. 4.
    Cartan, H.: Théorie du potentiel Newtonien: énergie, capacité, suites de potentiels. Bull. Soc. Math. Fr. 73, 74–106 (1945)MATHMathSciNetGoogle Scholar
  5. 5.
    Choquet, G.: Theory of capacities. Ann. Inst. Fourier Grenoble 5, 131–295 (1953–1954)CrossRefMathSciNetGoogle Scholar
  6. 6.
    De la Valée-Poussin, Ch.J.: Le Potentiel Logarithmique, Balayage et Répresentation Conforme. Louvain–Paris (1949)Google Scholar
  7. 7.
    Deny, J.: Les potentiels d’énergie finite. Acta Math. 82, 107–183 (1950)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Deny, J.: Sur la définition de l’énergie en théorie du potentiel. Ann. Inst. Fourier Grenoble 2, 83–99 (1950)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dragnev, P.D., Saff, E.B.: Riesz spherical potentials with external fields and minimal energy points separation. Potential Anal. 26, 139–162 (2007)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Edwards, R.: Cartan’s balayage theory for hyperbolic Riemann surfaces. Ann. Inst. Fourier 8, 263–272 (1958)MATHCrossRefGoogle Scholar
  11. 11.
    Edwards, R.: Functional Analysis. Theory and Applications. Holt. Rinehart and Winston, New York (1965)Google Scholar
  12. 12.
    Frostman, O.: Potentiel d’équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions. Comm. Sém. Math. Univ. Lund 3, 1–118 (1935)Google Scholar
  13. 13.
    Fuglede, B.: On the theory of potentials in locally compact spaces. Acta Math. 103, 139–215 (1960)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Fuglede, B.: Caractérisation des noyaux consistants en théorie du potentiel. Comptes Rendus 255, 241–243 (1962)MATHMathSciNetGoogle Scholar
  15. 15.
    Fuglede, B.: Asymptotic paths for subharmonic functions and polygonal connectedness of fine domains. In: Lectures Notes in Math., vol. 814, pp. 97–115. Springer, Berlin (1980)Google Scholar
  16. 16.
    Gauss, C.F.: Allgemeine Lehrsätze in Beziehung auf die im verkehrten Verhältnisse des Quadrats der Entfernung wirkenden Anziehungs—und Abstoßungs–Kräfte (1839). Werke 5, 197–244 (1867)Google Scholar
  17. 17.
    Gonchar, A.A., Rakhmanov, E.A.: On convergence of simultaneous Padé approximants for systems of functions of Markov type. Proc. Steklov Inst. Math. 157, 31–50 (1983)MATHMathSciNetGoogle Scholar
  18. 18.
    Gonchar, A.A., Rakhmanov, E.A.: Equilibrium measure and the distribution of zeros of extremal polynomials. Math. USSR-Sb. 53, 119–130 (1986)MATHCrossRefGoogle Scholar
  19. 19.
    Gonchar, A.A., Rakhmanov, E.A.: On the equilibrium problem for vector potentials. Russ. Math. Surv. 40(4), 183–184 (1985)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Harbrecht, H., Wendland, W.L., Zorii, N.: On Riesz minimal energy problems. Preprint Series Stuttgart Research Centre for Simulation Technology, no. 2010-81 (2010)Google Scholar
  21. 21.
    Harbrecht, H., Wendland, W.L., Zorii, N.: Riesz minimal energy problems on C k − 1,1-manifolds. Preprint Series Stuttgart Research Centre for Simulation Technology (2012)Google Scholar
  22. 22.
    Hayman, W.K.: Subharmonic Functions, vol. 2. Academic Press, London (1989)Google Scholar
  23. 23.
    Hayman, W.K., Kennedy, P.B.: Subharmonic Functions, vol. 1. Academic Press, London (1976)Google Scholar
  24. 24.
    Kelley, J.L.: General Topology. Princeton, New York (1957)Google Scholar
  25. 25.
    Landkof, N.S.: Foundations of Modern Potential Theory. Springer, Berlin (1972)MATHCrossRefGoogle Scholar
  26. 26.
    Leja, F.: The Theory of Analytic Functions. Akad., Warsaw. In Polish (1957)Google Scholar
  27. 27.
    Mhaskar, H.N., Saff, E.B.: Extremal problems for polynomials with exponential weights. Trans. Am. Math. Soc. 285, 204–234 (1984)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Moore, E.H., Smith, H.L.: A general theory of limits. Am. J. Math. 44, 102–121 (1922)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Nikishin, E.M., Sorokin, V.N.: Rational Approximations and Orthogonality. Translations of Mathematical Monographs, vol. 44. Amer. Math. Soc., Providence (1991)Google Scholar
  30. 30.
    Of, G., Wendland, W.L., Zorii, N.: On the numerical solution of minimal energy problems. Complex Variables and Elliptic Equations 55, 991–1012 (2010)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Ohtsuka, M.: On potentials in locally compact spaces. J. Sci. Hiroshima Univ. Ser. A-1 25, 135–352 (1961)MATHMathSciNetGoogle Scholar
  32. 32.
    Saff, E.B., Totik, V.: Logarithmic Potentials with External Fields. Springer, Berlin (1997)MATHGoogle Scholar
  33. 33.
    Zorii, N.: An extremal problem on the minimum of energy for space condensers. Ukr. Math. J. 38, 365–370 (1986)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Zorii, N.: A problem of minimum energy for space condensers and Riesz kernels. Ukr. Math. J. 41, 29–36 (1989)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Zorii, N.: A noncompact variational problem in Riesz potential theory. I. Ukr.Math. J. 47, 1541–1553 (1995)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Zorii, N.: A noncompact variational problem in Riesz potential theory. II. Ukr. Math. J. 48, 671–682 (1996)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Zorii, N.: Equilibrium potentials with external fields. Ukr. Math. J. 55, 1423–1444 (2003)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Zorii, N.: Equilibrium problems for potentials with external fields. Ukr. Math. J. 55, 1588–1618 (2003)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Zorii, N.: Necessary and sufficient conditions for the solvability of the Gauss variational problem. Ukr. Math. J. 57, 70–99 (2005)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Zorii, N.: Interior capacities of condensers in locally compact spaces. Potential Anal. 35, 103–143 (2011). doi: 10.1007/s11118-010-9204-y MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute of MathematicsUkrainian Academy of SciencesKyiv-4Ukraine

Personalised recommendations