Skip to main content
Log in

Principal Eigenvalue for the Random Walk among Random Traps on \({\mathbb{Z}}^{\bf {\it d}}\)

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Let \((\tau_x)_{x \in {\mathbb{Z}}^d}\) be i.i.d. random variables with heavy (polynomial) tails. Given a ∈ [0,1], we consider the Markov process defined by the jump rates \(\omega_{x \to y} = {\tau_x}^{-(1-a)} {\tau_y}^a\) between two neighbours x and y in \({{\mathbb{Z}}^d}\). We give the asymptotic behaviour of the principal eigenvalue of the generator of this process, with Dirichlet boundary condition. The prominent feature is a phase transition that occurs at some threshold depending on the dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, S.: Anomalous transport properties for random-hopping and random-trapping models. Phys. Rev. B 23(6), 2951–2955 (1981)

    Article  Google Scholar 

  2. Barlow, M., Cˇ erný, J.: Convergence to fractional kinetics for random walks associated with unbounded conductances. Preprint available at http://www.math.ethz.ch/~cerny/publications.html (2009)

  3. Baum, L.E., Katz, M.: Convergence rates in the law of large numbers. Trans. Am. Math. Soc. 120(1), 108–123 (1965)

    MathSciNet  MATH  Google Scholar 

  4. Ben, G., Arous, Černý, J.: Bouchaud’s model exhibits two different aging regimes in dimension one. Ann. Appl. Probab. 15(2), 1161–1192 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben, G., Arous, Černý, J.: Dynamics of trap models. In: Les Houches Summer School Lecture Notes. Elsevier, Amsterdam (2006)

    Google Scholar 

  6. Ben, G., Arous, Černý, J.: Scaling limit for trap models on \({{\mathbb{Z}}^d}\). Ann. Probab. 35(6), 2356–2384 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  8. Bovier, A., Faggionato, A.: Spectral characterization of aging: the REM-like trap model. Ann. Appl. Probab. 15(3), 1997–2037 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bovier, A., Faggionato, A.: Spectral analysis of Sinai’s walk for small eigenvalues. Ann. Probab. 36(1), 198–254 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bouchaud, J.-P.: Weak ergodicity breaking and aging in disordered systems. J. Phys. I (France) 2, 1705–1713 (1992)

    Article  Google Scholar 

  11. Chen, M.-F.: Eigenvalues, Inequalities, and Ergodic Theory. Springer, New York (2005)

    MATH  Google Scholar 

  12. De Masi, A., Ferrari, P.A., Goldstein, S., Wick, W.D.: An invariance principle for reversible Markov processes. Applications to random motions in random environments. J. Stat. Phys. 55(3–4), 787–855 (1989)

    MATH  Google Scholar 

  13. Faggionato, A.: Spectral analysis of 1D nearest-neighbor random walks with applications to subdiffusive random trap and barrier models. ArXiv:0905.2900v1 (2009)

  14. Feller, W.: An introduction to probability theory and its applications, vol. I, 3rd edn. Wiley, New York (1968)

    Google Scholar 

  15. Feller, W.: An introduction to probability theory and its applications, vol. II, 2nd edn. Wiley, New York (1971)

    MATH  Google Scholar 

  16. Fontes, L.R.G., Isopi, M., Newman, C.M.: Random walks with strongly inhomogeneous rates and singular diffusions: convergence, localization and aging in one dimension. Ann. Probab. 30(2), 579–604 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fontes, L.R.G., Mathieu, P.: On symmetric random walks with random conductances on \({{\mathbb{Z}}^d}\). Probab. Theory Relat. Fields 134, 565–602 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fontes, L.R.G., Mathieu, P.: K-processes, scaling limit and aging for the trap model in the complete graph. Ann. Probab. 36(4), 1322–1358 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jara, M., Landim, C., Teixeira, A.: Quenched scaling limits of trap models. ArXiv:0902.3334v1 (2009)

  20. Lawler, G.F.: Intersections of random walks. In: Probability and Its Applications. Birkhäuser, Boston (1991)

    Google Scholar 

  21. Lyons, R., Peres, Y.: Probability on Trees and Networks. Cambridge University Press. http://mypage.iu.edu/~rdlyons/ (2009)

    Google Scholar 

  22. Mélin, R., Butaud, P.: Glauber dynamics and ageing. J. Physique I 7(5), 691–710 (1997)

    Article  MathSciNet  Google Scholar 

  23. Petrov, V.V.: Limit theorems of probability theory—sequences of independent random variables. In: Oxford Studies in Probability (1995)

  24. Resnick, S.I.: Extreme Values, Regular Variation, and Point Processes. Springer, New York (1987)

    MATH  Google Scholar 

  25. Rinn, B., Maass, P., Bouchaud, J.-P.: Multiple scaling regimes in simple aging models. Phys. Rev. Lett. 84(23), 5403–5406 (2000)

    Article  Google Scholar 

  26. Saloff-Coste, L.: Lectures on finite Markov chains. In: Lectures on Probability Theory and Statistics (Saint-Flour 1996). Lecture Notes in Math., vol. 1665, pp. 301–413. Springer, New York (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Christophe Mourrat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mourrat, JC. Principal Eigenvalue for the Random Walk among Random Traps on \({\mathbb{Z}}^{\bf {\it d}}\) . Potential Anal 33, 227–247 (2010). https://doi.org/10.1007/s11118-009-9167-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-009-9167-z

Keywords

Mathematics Subject Classifications (2000)

Navigation