Potential Analysis

, Volume 28, Issue 2, pp 185–200 | Cite as

Parabolic Equations and Markov Processes Over p-Adic Fields

  • W. A. Zúñiga-Galindo


In this paper we construct and study a fundamental solution of Cauchy’s problem for p-adic parabolic equations of the type
$$\frac{\partial u\left( x,t\right) }{\partial t}+\left( f\left( D,\beta\right) u\right) \left( x,t\right) =0,x\in \mathbb{Q}_{p}^{n},n\geq 1,t\in\left( 0,T\right] ,$$
where \(f\left( D,\beta \right) , \beta >0\), is an elliptic pseudo-differential operator. We also show that the fundamental solution is the transition density of a Markov process with state space \(\mathbb{Q}_p^n \).


Parabolic equations Ultrametric difussion Pseudo-differential operators Markov processes p-adic fields 

Mathematics Subject Classifications (2000)

Primary 35K30; Secondary 46S10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albeverio, S., Karwoski, W.: Diffusion in p-adic numbers. In: Ito, K., Hida, H. (eds.) Gaussian Random Fields, pp. 86–99. World Scientific, Singapore (1991)Google Scholar
  2. 2.
    Albeverio, S., Karwoski, W.: A random walk on p-adics: the generator and its spectrum. Stochastic Process. Appl. 53, 1–22 (1994)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Avetisov, A.V., Bikulov, A.H., Kozyrev, S.V., Osipov, V.A.: p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes. J. Phys. A 35, 177–189 (2002)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Avetisov, A.V., Bikulov, A.H., Osipov, V.A.: p-adic description of characteristic relaxation in complex systems. J. Phys. A 36, 4239–4246 (2003)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Berg C., Forst, G.: Potential Theory on Locally Compact Abelian Groups. Springer, Berlin (1975)MATHGoogle Scholar
  6. 6.
    Blair, A.D.: Adelic path integrals. Rev. Math. Phys. 7, 21–49 (1995)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Borevich, Z.I., Shafarevich, I.R.: Number Theory. Academic Press, Inc. (1986)Google Scholar
  8. 8.
    Dynkin, E.B.: Foundations of the Theory of Markov Processes. Prentice-Hall, Englewood Cliffs, NJ (1961)Google Scholar
  9. 9.
    Evans, S.N.: Local properties of Lévy processes on a totally disconnected group. J. Theoret. Probab. 6, 817–850 (1993)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Evans, S.N.: Brownian motion. J. Theoret. Probab. 2, 209–259 (1989)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Haran, S.: Potentials and explicit sums in arithmetic. Invent. Math. 101, 797–703 (1990)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Haran, S.: Analytic potential theory over the p-adics. Ann. Inst. Fourier 43, 905–944 (1993)MATHMathSciNetGoogle Scholar
  13. 13.
    Igusa, J.-I.: Lectures on forms of higher degree. Lectures on mathematics and physics, Tata Institute of Fundamental Research, vol. 59. Springer-Verlag (1978)Google Scholar
  14. 14.
    Igusa, J.-I.: An introduction to the theory of local zeta functions. AMS /IP studies in advanced mathematics, vol. 14 (2000)Google Scholar
  15. 15.
    Ismagilov, R.S.: On the spectrum of the self-adjoint operator in L 2(K) where K is a local field; an analog of the Feynman–Kac formula. Theor. Math. Phys. 89, 1024–1028 (1991)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Khrennikov, A.: p-Adic Valued Distributions in Mathematical Physics. Kluwer, Dordrechht (1994)MATHGoogle Scholar
  17. 17.
    Khrennikov, A.: Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models. Kluwer, Dordrechht (1997)MATHGoogle Scholar
  18. 18.
    Kochubei, A.N.: Parabolic equations over the field of p-adic numbers. Math. USSR, Izv. 39, 1263–1280 (1992)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Kochubei, A.N.: Pseudo-Differential Equations and Stochastics over Non-Archimedean Fields. Marcel Dekker, Inc, New York, NY (2001)MATHGoogle Scholar
  20. 20.
    Rammal, R., Toulouse, G.: Ultrametricity for physicists. Rev. Modern Phys. 58, 765–778 (1986)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Varadarajan, V.S.: Path integrals for a class of p-adic Schrödinger equations. Lett. Math. Phys. 39, 97–106 (1997)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Vladimirov, V.S., Volovich, I.V., Zelenov, E.I.: p-adic Analysis and Mathematical Physics. World Scientific, Singapore (1994)Google Scholar
  23. 23.
    Zuniga-Galindo, W.A.: Igusa’s local zeta functions of semiquasihomogeneous polynomials. Trans. Amer. Math. Soc. 353(8), 3193–3207 (2001)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Departamento de MatemáticasCentro de Investigación y de Estudios Avanzados del I.P.N.México D.F.México
  2. 2.Department of Mathematics and Computer ScienceBarry UniversityMiami ShoresUSA

Personalised recommendations