Advertisement

Potential Analysis

, Volume 23, Issue 3, pp 207–224 | Cite as

Comparison of Green Kernels for Elliptic Operators on (0,∞)

  • A. Ifra
  • M. Selmi
Article

Abstract

In this paper we give necessary and sufficient conditions for the comparability of Green kernels for second-order elliptic operators in the one-dimensional case.

Keywords

elliptic operators Green kernel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ancona, A.: ‘Comparaison des mesures harmoniques et des fonctions de Green pour des opérateurs elliptiques dans un domaine lipschitzien’, C. R. Acad. Sci. Paris 294 (1982), 505–508. Google Scholar
  2. 2.
    Cranston, M. and Zhao, Z.: ‘Conditional transformation of drift formula and potential theory for \(\frac{1}{2}\Delta+b(\cdot)\nabla\) ’, Comm. Math. Phys. 112 (1987), 613–625. Google Scholar
  3. 3.
    Cranston, M., Fabes, E.B. and Zhao, Z.: ‘Conditional gauge and potential theory for Schrödinger operator’, Trans. Amer. Math. Soc. 307 (1988). Google Scholar
  4. 4.
    Hirsch, F.: ‘Conditions nécessaires et suffisantes d’existence de résolvantes’, Z. Wahr. Verw. Gebiete 29 (1974), 73–85. Google Scholar
  5. 5.
    Hueber, H. and Sieveking, M.: ‘Uniform bounds for quotients of Green functions on C1,1 domains’, Ann. Inst. Fourier 32(1) (1982), 105–117. Google Scholar
  6. 6.
    Maagli, H. and Syrine, M.: ‘Sur les solutions d’un opérateur differentiel singulier semi-lineaire’, Potential Anal. 10(3) (1999), 289–303. Google Scholar
  7. 7.
    Riahi, L.: ‘Comparison of Green functions for generalized Schrödinger operators on C1,1 domains’, J. Ineq. Pures Appl. Math. 4(1) (2003). Google Scholar
  8. 8.
    Selmi, M.: ‘Critère de comparaison de certains noyaux de Green’, in Séminaire de Theorie du Potentiel, Lecture Notes in Math. 1235, 1987, pp. 172–193. Google Scholar
  9. 9.
    Selmi, M.: ‘Comparaison des noyaux de Green sur les domaines C1,1’, Rev. Roumaine Math. Pures Appl. 36 (1991), 91–100. Google Scholar
  10. 10.
    Trimeche, K.: ‘Transformation intégrale de Weyl et théorème de Paley–Wiener associés a un opérateur différentiel singulier sur (0,∞)’, J. Math. Pures Appl. 60 (1981), 51–98. Google Scholar
  11. 11.
    Widder, D.V.: The Laplace Transform, Princeton Mathematical Series, 1946. Google Scholar
  12. 12.
    Zhao, Z.: ‘Green function for Schrödinger operator and conditioned Feynman–Kac gauge’, J. Math. Anal. Appl. 116 (1986), 309–334. Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • A. Ifra
    • 1
  • M. Selmi
    • 1
  1. 1.Department of MathematicsFaculty of Sciences of Tunis-Campus UniversitaireTunisTunisia

Personalised recommendations