Potential Analysis

, Volume 22, Issue 2, pp 171–181 | Cite as

On the Global Integrability of Non-Negative Harmonic Functions



Let ℋ+(D) be the set of all non-negative harmonic functions on a domain D⊂Rd. Let q>0 and define Lq(D) to be the set of all Borel functions f such that |f|q is Lebesgue-integrable on D. Let x0D. N. Suzuki established the following:
$$\mathcal{H}^{+}(D)\subset L^{q}(D)\Leftrightarrow \sup\biggl\{\int_{D}h^{q}(x)\,\mathrm{d}x:h\in\mathcal{H}^{+}(D),h(x_{0})=1\biggr\}<\infty.$$

In this paper, we prove results of this kind in a general setting of harmonic spaces covering the elliptic case and the parabolic one as well. The last section deals with some applications of these results.


\(\mathcal{P}\) -harmonic Bauer spaces reference measures integral representation of non-negative harmonic functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armitage, D.H.: ‘On the global integrability of superharmonic functions in balls’, J. London Math. Soc. (2) 4 (1971), 365–373. Google Scholar
  2. 2.
    Armitage, D.H. and Gardiner, S.J.: Classical Potential Theory, Springer-Verlag, London, 2001. Google Scholar
  3. 3.
    Bauer, H.: Harmonische Räume und ihre Potentialtheorie, Lecture Notes in Math. 22, Springer-Verlag, Berlin, 1966. Google Scholar
  4. 4.
    Billingsley, P.: Convergence of Probability Measures, Wiley, New York, 1968. Google Scholar
  5. 5.
    Bliedtner, J. and Hansen, W.: Potential Theory. An Analytic and Probabilistic Approach to Balayage, Springer-Verlag, Berlin, 1986. Google Scholar
  6. 6.
    Constantinescu, C. and Cornea, A.: Potential Theory on Harmonic Spaces, Springer-Verlag, New York, 1972. Google Scholar
  7. 7.
    Doob, J.L.: Classical Potential Theory and its Probabilistic Counterpart, Springer-Verlag, New York, 1984. Google Scholar
  8. 8.
    Dynkin, E.B. and Kuznetsov, S.E.: ‘Solutions of Lu=uα dominated by L-harmonic functions’, J. Anal. Math. 68 (1996), 15–37. Google Scholar
  9. 9.
    Edgar, G.A.: Integral, Probability, and Fractal Measures, Springer-Verlag, New York, 1998. Google Scholar
  10. 10.
    El Mabrouk, K.: ‘Semilinear perturbations of harmonic spaces and Martin–Orlicz capacities: An approach to the trace of moderate \(\mathcal{U}\) -functions’, Adv. Differential Equations 7(11) (2002), 1377–1408. Google Scholar
  11. 11.
    El Mabrouk, K.: ‘Semilinear perturbations of harmonic spaces, Liouville property and a boundary value problem’, Potential Anal. 19(1) (2003), 35–50. Google Scholar
  12. 12.
    Gelfand, I.M.: ‘Sur un lemme de la théorie des espaces linéaires’, Izv. Nauchno-Issled. Inst. Mat. Khar’kov Univ. Ser. 4 13 (1936), 35–40. Google Scholar
  13. 13.
    Gmira, A. and Véron, L.: ‘Boundary singularities of solutions of some nonlinear elliptic equations’, Duke Math. J. 64(2) (1991), 271–324. Google Scholar
  14. 14.
    Janssen, K.: ‘Martin boundary and ℋp-theory of harmonic spaces’, in Lecture Notes in Math. 226, Springer, 1971, pp. 102–151. Google Scholar
  15. 15.
    Maeda, F.Y. and Suzuki, N.: ‘The integrability of superharmonic functions on Lipschitz domains’, Bull. London Math. Soc. 21 (1989), 270–278. Google Scholar
  16. 16.
    Marcus, M. and Véron, L.: ‘The boundary trace of positive solutions of semilinear elliptic equations: The supercritical case’, J. Math. Pures Appl. (9) 77(5) (1998), 481–524. Google Scholar
  17. 17.
    Marcus, M. and Véron, L.: ‘Removable singularities and boundary traces’, J. Math. Pures Appl. (9) 80 (2001), 879–900. Google Scholar
  18. 18.
    Suzuki, N.: ‘Note on the integrability of superharmonic functions’, Proc. Amer. Math. Soc. 118(2) (1993), 415–417. Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Fakultät für MathematikUniversität BielefeldBielefeldGermany

Personalised recommendations