Adding an identity to a Banach lattice algebra: a look at a Wickstead’s counter-example from a norm-free point of view

Abstract

Recently, Wickstead investigated the long-standing problem of adding an identity to a non-unital Banach lattice algebra. In this regard, he proved that, in the category whose objects are unital Banach lattice algebras and morphisms are identity preserving algebra and lattice homomorphisms, there is no reflection for \(c_{0}\) in which \(c_{0}\) can be embedded as an algebra and order ideal. The main purpose of this note is to describe an alternative category in which a suitable reflection of \(c_{0}\) can be located, producing a satisfactory lattice unitization of \(c_{0}\) with \(c_{0}\) as an algebra and order ideal.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. The Joy of Cats. Pure and Applied Mathematics. Wiley, New York (1990)

    Google Scholar 

  2. 2.

    Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Reprint of the: original, p. 2006. Springer, Dordrecht (1985)

  3. 3.

    Amor, M.A.B., Boulabiar, K., El Adeb, C.: Corrigendum to “extreme contractive operators on Stone f-algebras” [Indag. Math. 25 (2014) 93–103] [MR3131767]. Indag. Math. (N.S.) 28(5), 1109–1110 (2017)

  4. 4.

    Amor, M.A.B., Boulabiar, K., El Adeb, C.: Extreme contractive operators on Stone f-algebras. Indag. Math. (N.S.) 25(1), 93–103 (2014)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Bonsall, F.F., Duncan, J.: Complete Normed Algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80. Springer, New York (1973)

    Google Scholar 

  6. 6.

    de Pagter, B.: f-Algebras and Orthomorphisms. Ph.D. thesis, Leiden (1981)

  7. 7.

    Huijsmans, C.B., de Pagter, B.: Averaging operators and positive contractive projections. J. Math. Anal. Appl. 113(1), 163–184 (1986)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Huijsmans, C.B., de Pagter, B.: Subalgebras and Riesz subspaces of an f-algebra. Proc. Lond. Math. Soc. (3) 48(1), 161–174 (1984)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Wickstead, A.W.: Banach lattice algebras: some questions, but very few answers. Positivity 21(2), 803–815 (2017)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Zaanen, A.C.: Riesz Spaces II. North-Holland Mathematical Library, vol. 30. North-Holland Publishing Co., Amsterdam (1983)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Mahfoudhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boulabiar, K., Hafsi, H. & Mahfoudhi, M. Adding an identity to a Banach lattice algebra: a look at a Wickstead’s counter-example from a norm-free point of view. Positivity (2021). https://doi.org/10.1007/s11117-021-00814-9

Download citation

Keywords

  • Algebra homomorphism
  • Banach lattice algebra
  • Category
  • Continuous function
  • Identity
  • Lattice homomorphism
  • Stone f-algebra
  • Stone homomorphism
  • Unit

Mathematics Subject Classification

  • 06F25
  • 46B42
  • 46J10