Approximation properties of a family of integral type operators


In this paper we consider a general class of linear positive processes of integral type. These operators act on functions defined on unbounded interval. Among the particular cases included are Durrmeyer–Jain operators, Păltănea–Szász–Mirakjan operators and operators using Baskakov–Szász type bases. We focus on highlighting some approximation targeting different classes of functions. The main working tools are Bohman–Korovkin theorem, weighted K-functionals and moduli of smoothness.

This is a preview of subscription content, access via your institution.


  1. 1.

    Abel, U., Karsli, H.: Asymptotic expansions for Bernstein–Durrmeyer–Chlodovsky polynomials. Results Math. 73, Article 104 (2018)

  2. 2.

    Agratini, O.: On an approximation process of integral type. Appl. Math. Comput. 236, 195–201 (2014)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Agratini, O.: Uniform approximation of some classes of linear positive operators expressed by series. Appl. Anal. 94(8), 1662–1669 (2015)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Agrawal, P.N., Mohamed, A.J.: Linear combination of a new sequence of linear positive operators. Rev. Un. Mat. Argentina 42(2), 57–65 (2001)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Agrawal, P.N., Mohamed, A.J.: On \(L_p\)-approximation by a linear combination of a new sequence of linear positive operators. Turk. J. Math. 27, 389–405 (2003)

    Google Scholar 

  6. 6.

    de la Cal, J., Cárcamo, J.: On uniform approximation by some classical Bernstein-type operators. J. Math. Anal. Appl. 279(2), 625–638 (2003)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Derriennic, M.M.: Sur l’approximation de fonctions intégrables sur \([0,1]\) par des polynômes de Bernstein modifiés. J. Approx. Theory 31, 325–343 (1981)

    MathSciNet  Article  Google Scholar 

  8. 8.

    De Vore, R.A., Lorentz, G.G.: Constructive Approximation. A Series of Comprehensive Studies in Mathematics, vol. 303. Springer, Berlin (1993)

    Google Scholar 

  9. 9.

    Dieudonné, J.: Éléments d’Analyse. Tome 1: Fondements de l’Analyse Moderne. Gauthiers Villars, Paris (1968)

    Google Scholar 

  10. 10.

    Ditzian, Z., Totik, V.: Moduli of Smoothness. Springer Series in Computational Mathematics, vol. 9. Springer-Verlag, New York Inc., New York (1987)

    Google Scholar 

  11. 11.

    Djebali, S.: Uniform continuity and growth of real continuous functions. Int. J. Math. Educ. Sci. Technol. 32(5), 677–689 (2001)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Durrmeyer, J.-L.: Une formule d’inversion de la transformée de Laplace: applications à la théorie des moments. Thèse de 3e cycle, Faculté des Sciences de l’Université de Paris (1967)

  13. 13.

    Gupta, V., Gupta, M.K.: Rate of convergence for certain families of summation-integral type operators. J. Math. Anal. Appl. 296, 608–618 (2004)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Jain, G.C.: Approximation of functions by a new class of linear operators. J. Aust. Math. Soc. 13(3), 271–276 (1972)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Korovkin, P.P.: On convergence of linear positive operators in the space of continuous functions. Dokl. Akad. Nauk SSSR (N.S.) 90, 961–964 (1953). (Russian)

    MathSciNet  Google Scholar 

  16. 16.

    May, C.P.: On Phillips operators. J. Approx. Theory 20(4), 315–332 (1977)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Mursaleen, M., Rahman, S., Ansari, K.J.: On the approximation by Bézier-Păltănea operators based on Gould-Hopper polynomials. Math. Commun. 24(2), 147–164 (2019)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Păltănea, R.: Modified Szász-Mirakjan operators of integral form. Carpathian J. Math. 24(3), 378–385 (2008)

    MATH  Google Scholar 

  19. 19.

    Păltănea, R.: Simultaneous approximation by a class of Szász-Mirakjan operators. J. Appl. Funct. Anal. 9(3–4), 356–368 (2014)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Phillips, R.S.: An inversion formula for Laplace transforms and semigroups of linear operators. Ann. Math. Second Ser. 59, 325–356 (1954)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Octavian Agratini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Agratini, O. Approximation properties of a family of integral type operators. Positivity 25, 97–108 (2021).

Download citation


  • Positive linear operator
  • Weighted K-functional
  • Modulus of smoothness
  • Durrmeyer–Jain operator

Mathematics Subject Classification

  • 41A36
  • 41A25