A general theory of tensor products of convex sets in Euclidean spaces


We introduce both the notions of tensor product of convex bodies that contain zero in the interior, and of tensor product of 0-symmetric convex bodies in Euclidean spaces. We prove that there is a bijection between tensor products of 0-symmetric convex bodies and tensor norms on finite dimensional spaces. This bijection preserves duality, injectivity and projectivity. We obtain a formulation of Grothendieck‘s Theorem for 0-symmetric convex bodies and use it to give a geometric representation (up to the \(K_G\)-constant) of the Hilbertian tensor product. We see that the property of having enough symmetries is preserved by these tensor products, and exhibit relations with the Löwner and the John ellipsoids.

This is a preview of subscription content, access via your institution.


  1. 1.

    Artstein-Avidan, S., Giannopoulos, A., Milman, V.D.: Asymptotic Geometric Analysis. Part I. American Mathematical Society, Providence, RI (2015)

  2. 2.

    Aubrun, G., Szarek, S.: Tensor products of convex sets and the volume of separable states on n qudits. Phys. Rev. A 73(2), 022109 (2006)

    Article  Google Scholar 

  3. 3.

    Aubrun, G., Szarek, S.: Alice and Bob Meet Banach: The Interface of Asymptotic Geometric Analysis and Quantum Information Theory. American Mathematical Soc. (2017)

  4. 4.

    Behrends, E., Wittstock, G.: Tensorprodukte und simplexe. Invent. Math. 11, 188–198 (1970)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Davies, E., Vincent-Smith, G.: Tensor products, infinite products, and projective limits of Choquet simplexes. Math. Scand. 22(1), 145–164 (1969)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Defant, A., Floret, K.: Tensor Norms and Operator Ideals. North Holland Mathematics Studies, Amsterdam (1992)

    MATH  Google Scholar 

  7. 7.

    Diestel, J., Fourie, J., Swart, J.: The Metric Theory of Tensor Products. American Mathematical Society, Providence, RI (2008). Grothendieck’s résumé revisited

  8. 8.

    Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  9. 9.

    Efremenko, K.: 3-query locally decodable codes of subexponential length. In: STOC’09-Proceedings of the 2009 ACM International Symposium on Theory of Computing, pp. 39–44 (2009)

  10. 10.

    Fernández-Unzueta, M., Higueras-Montaño, L.: Convex bodies associated to tensor norms. J. Convex Anal. 26, 4 (2019)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Grothendieck, A.: Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Mat. São Paulo 8, 1–79 (1953)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Hulanicki, A., Phelps, R.: Some applications of tensor products of partially-ordered linear spaces. J. Funct. Anal. 2, 177–201 (1968)

    MathSciNet  Article  Google Scholar 

  13. 13.

    John, F.: Extremum problems with inequalities as subsidiary conditions. Studies and Essays Presented to R. Courant on his 60th Birthday, pp. 187–204. Interscience Publishers Inc, New York (1948)

  14. 14.

    Johnson, W., Lindenstrauss, J.: Basic concepts in the geometry of banach spaces. In: Johnson, W., Lindenstrauss, J. (eds.) Handbook of the Geometry of Banach Spaces, vol. 1, pp. 1–84. Elsevier, Amsterdam (2001)

    Google Scholar 

  15. 15.

    Kadison, R., Ringrose, J.: Fundamentals of the Theory of Operator Algebras. Academic Press, Edinburgh (1983)

    MATH  Google Scholar 

  16. 16.

    Kakutani, S.: Some characterizations of Euclidean space. Jap. J. Math. 16, 93–97 (1939)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Khot, S., Naor, A.: Grothendieck-type inequalities in combinatorial optimization. Commun. Pure Appl. Math. 65(7), 992–1035 (2012)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Lazar, A.: Affine products of simplexes. Math. Scand. 22, 165–175 (1968)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Minkowski, H.: Geometrie der Zahlen 1910. Teubner, Leipzig (1927)

    Google Scholar 

  20. 20.

    Namioka, I., Phelps, R.: Tensor products of compact convex sets. Pac. J. Math. 31(2), 469–480 (1969)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Pietsch, A.: Operator Ideals. North-Holland Publishing Company, Amsterdam (1980)

    MATH  Google Scholar 

  22. 22.

    Pisier, G.: Factorization of linear operators and Geometry of Banach spaces. In: Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (1986)

  23. 23.

    Pisier, G.: Grothendieck’s theorem, past and present. Bull. Am. Math. Soc. 49(2), 237–323 (2012)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Ryan, R.: Introduction to Tensor Products of Banach Spaces. Springer, Berlin (2002)

    Book  Google Scholar 

  25. 25.

    Schneider, R.: Convex bodies: the Brunn-Minkowski theory. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  26. 26.

    Semadeni, Z.: Categorical methods in convexity. In: Proceedings of Colloquium on Convexity (Copenhagen, 1965), pp. 281–307. Kobenhavns Univ. Mat. Inst., Copenhagen (1967)

  27. 27.

    Tomczak-Jaegermann, N.: Banach-Mazur Distances and Finite-Dimensional Operator Ideals. Longman Sc & Tech, Harlow (1989)

    MATH  Google Scholar 

  28. 28.

    Velasco, M.: Linearization functors on real convex sets. SIAM J. Optim. 25(1), 1–27 (2015)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Luisa F. Higueras-Montaño.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was partially supported by Consejo Nacional de Ciencia y Tecnología (CONACyT), grant number 284110. The second named author was supported by CONACyT scholarship for Ph.D. studies.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fernández-Unzueta, M., Higueras-Montaño, L.F. A general theory of tensor products of convex sets in Euclidean spaces. Positivity 24, 1373–1398 (2020). https://doi.org/10.1007/s11117-020-00736-y

Download citation


  • Convex body
  • Tensor product of convex sets
  • Tensor product of banach spaces
  • Hilbertian tensor norm
  • Ideals of linear operators
  • Grothendieck’s inequality

Mathematics Subject Classification

  • 46M05
  • 52A21
  • 47L20
  • 15A69