Positivity

pp 1–14 | Cite as

Norm inequalities related to the arithmetic–geometric mean inequalities for positive semidefinite matrices

Article
  • 49 Downloads

Abstract

In this paper, we propose three new matrix versions of the arithmetic–geometric mean inequality for unitarily invariant norms, which stem from the fact that the Heinz mean of two positive real numbers interpolates between the geometric and arithmetic means of these numbers. Related trace inequalities are also presented.

Keywords

Unitarily invariant norm Hilbert–Schmidt norm Singular value Trace Positive semidefinite matrix Inequality 

Mathematics Subject Classification

Primary 15A60 Secondary 15A18 15A42 47A30 47B15 

References

  1. 1.
    Alakhrass, M.: Norm inequalities for sums and differences of products of matrices (preprint)Google Scholar
  2. 2.
    Ando, T., Zhan, X.: Norm inequalities related to operator monotone functions. Math. Ann. 315, 771–780 (1999)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ando, T., Hiai, F., Okubo, K.: Trace inequalities for multiple products of two matrices. Math. Inequal. Appl. 3, 307–318 (2000)MathSciNetMATHGoogle Scholar
  4. 4.
    Audenaert, K.: A norm inequality for pairs of commuting positive semidefinite matrices. Electron. J. Linear Algebra 30, 80–84 (2015)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bhatia, R.: Matrix Analysis. Springer, New York (1997)CrossRefMATHGoogle Scholar
  6. 6.
    Bhatia, R.: Trace inequalities for products of positive definite matrices. J. Math. Phys. 55, 013509 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bhatia, R., Davis, C.: More matrix forms of the arithmetic–geometric mean inequality. SIAM J. Matrix Anal. 14, 132–136 (1993)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bottazzi, T., Elencwajg, R., Larotonda, G., Varela, A.: Inequalities related to Bourin and Heinz means with a complex parameter. J. Math. Anal. Appl. 426, 765–773 (2015)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bourin, J.C.: Matrix versions of some classical inequalities. Linear Algebra Appl. 416, 890–907 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bourin, J.C.: Matrix subadditivity inequalities and block-matrices. Int. J. Math. 20, 679–691 (2009)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Hayajneh, S., Kittaneh, F.: Lieb–Thirring trace inequalities and a question of Bourin. J. Math. Phys. 54, 033504 (2013)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Hayajneh, S., Kittaneh, F.: Trace inequalities and a question of Bourin. Bull. Aust. Math. Soc. 88, 384–389 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Hayajneh, M., Hayajneh, S., Kittaneh, F.: Remarks on some norm inequalities for positive semidefinite matrices and questions of Bourin. Math. Inequal. Appl. 20, 225–232 (2017)MathSciNetMATHGoogle Scholar
  14. 14.
    Hayajneh, M., Hayajneh, S., Kittaneh, F.: On the Ando–Hiai–Okubo trace inequality. J. Oper. Theory 77, 77–86 (2017)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Hayajneh, M., Hayajneh, S., Kittaneh, F.: Norm inequalities for positive semidefinite matrices and a question of Bourin. Int. J. Math. 28, 1750102 (2017)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Heinz, E.: Beitrage zur Storungstheorie der Spektralzerlegung. Math. Ann. 123, 415–438 (1951)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Hoa, D.T.: An inequality for $t$-geometric means. Math. Inequal. Appl. 19, 765–768 (2016)MathSciNetMATHGoogle Scholar
  18. 18.
    Kittaneh, F.: A note on the arithmetic–geometric mean inequality for matrices. Linear Algebra Appl. 171, 1–8 (1992)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Lin, M.: Remarks on two recent results of Audenaert. Linear Algebra Appl. 489, 24–29 (2016)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Ltu, J.-T., Wang, Q.-W., Sun, F.-F.: On Hayajneh and Kittaneh’s conjecture on unitarily invariant norm. J. Math. Inequal. 11, 1019–1022 (2017)MathSciNetMATHGoogle Scholar
  21. 21.
    Plevnik, L.: On a matrix trace inequality due to Ando, Hiai and Okubo. Indian J. Pure Appl. Math. 47, 491–500 (2016)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Simon, B.: Trace Ideals and Their Applications, Mathematical Surveys and Monographs, vol. 120, 2nd edn. American Mathematical Society, Providence (2005)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mostafa Hayajneh
    • 1
  • Saja Hayajneh
    • 2
  • Fuad Kittaneh
    • 2
  1. 1.Department of MathematicsYarmouk UniversityIrbidJordan
  2. 2.Department of MathematicsThe University of JordanAmmanJordan

Personalised recommendations