Skip to main content
Log in

Levitin–Polyak well-posedness for strong bilevel vector equilibrium problems and applications to traffic network problems with equilibrium constraints

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

In this paper we consider strong bilevel vector equilibrium problems and introduce the concepts of Levitin–Polyak well-posedness and Levitin–Polyak well-posedness in the generalized sense for such problems. The notions of upper/lower semicontinuity involving variable cones for vector-valued mappings and their properties are proposed and studied. Using these generalized semicontinuity notions, we investigate sufficient and/or necessary conditions of the Levitin–Polyak well-posedness for the reference problems. Some metric characterizations of these Levitin–Polyak well-posedness concepts in the behavior of approximate solution sets are also discussed. As an application, we consider the special case of traffic network problems with equilibrium constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anh, L.Q., Hung, N.V.: Stability of solution mappings for parametric bilevel vector equilibrium problems. Comput. Appl. Math. 31, 747–757 (2017)

    Google Scholar 

  2. Anh, L.Q., Hien, D.V.: On well-posedness for parametric vector quasiequilibrium problems with moving cones. Appl. Math. 61, 651–668 (2016)

    Article  MathSciNet  Google Scholar 

  3. Anh, L.Q., Khanh, P.Q.: Semicontinuity of solution sets to parametric quasivariational inclusions with applications to traffic networks II: lower semicontinuities. Set-Valued Anal. 16, 943–960 (2008)

    Article  MathSciNet  Google Scholar 

  4. Anh, L.Q., Khanh, P.Q., Van, D.T.M., Yao, J.C.: Well-posedness for vector quasiequilibria. Taiwan. J. Math. 13, 713–737 (2009)

    Article  MathSciNet  Google Scholar 

  5. Anh, L.Q., Khanh, P.Q., Van, D.T.M.: Well-posedness under relaxed semicontinuity for bilevel equilibrium and optimization problems with equilibrium constraints. J. Optim. Theory Appl. 153, 42–59 (2012)

    Article  MathSciNet  Google Scholar 

  6. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  7. Bao, T.Q., Mordukhovich, B.S.: Necessary conditions in multiobjective optimization with equilibrium constraints. J. Optim. Theory Appl. 135, 179–203 (2007)

    Article  MathSciNet  Google Scholar 

  8. Bao, T.Q., Mordukhovich, B.S.: Sufficient optimality conditions for global Pareto solutions to multiobjective problems with equilibrium constraints. J. Nonlinear Convex Anal. 15, 105–127 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Bento, G.C., Cruz Neto, J.X., Lopes, J.O., Soares, J.R., Soubeyran, P.A.: Generalized proximal distance for bilevel equilibrium problems. SIAM J. Optim 26, 810–830 (2016)

    Article  MathSciNet  Google Scholar 

  10. Chadli, O., Ansari, Q.H., Al-Homidan, S.: Existence of solutions and algorithms for bilevel vector equilibrium problems: an auxiliary principle technique. J. Optim. Theory Appl. 172, 726–758 (2017)

    Article  MathSciNet  Google Scholar 

  11. Chen, J.W., Wan, Z., Cho, Y.J.: The existence of solutions and well-posedness for bilevel mixed equilibrium problems in Banach spaces. Taiwan. J. Math. 17, 725–748 (2013)

    Article  MathSciNet  Google Scholar 

  12. Chen, J.W., Wan, Z.P., Zou, Y.Z.: Bilevel invex equilibrium problems with applications. Optim. Lett. 8, 447–461 (2014)

    Article  MathSciNet  Google Scholar 

  13. De Luca, M.: Generalized quasi-variational inequalities and traffic equilibrium problem. In: Giannessi, F., Maugeri, A. (eds.) Variational Inequalities and Networks Equilibrium Problems. Plenum Press, New York (1995)

    Google Scholar 

  14. Ding, X.P.: Existence and iterative algorithm of solutions for a class of bilevel generalized mixed equilibrium problems in Banach spaces. J. Glob. Optim. 53, 525–537 (2012)

    Article  MathSciNet  Google Scholar 

  15. Ding, X.P.: A new class of bilevel generalized mixed equilibrium problems in Banach spaces. Acta Math. Scientia 32, 1571–1583 (2012)

    Article  MathSciNet  Google Scholar 

  16. Dinh, B.V., Muu, L.D.: On penalty and gap function methods for bilevel equilibrium problems. J. Appl. Math. 2011, 1–14 (2011)

    Article  MathSciNet  Google Scholar 

  17. Duc, P.M., Muu, L.D.: A splitting algorithm for a class of bilevel equilibrium problems involving nonexpansive mappings. Optimization 65, 1855–1866 (2017). (online first)

    Article  MathSciNet  Google Scholar 

  18. Fang, Y.P., Hu, R., Huang, N.J.: Well-posedness for equilibrium problems and for optimization problems with equilibrium constraints. Comput. Math. Appl. 55, 89–100 (2008)

    Article  MathSciNet  Google Scholar 

  19. Hu, R., Fang, Y.P.: Levitin–Polyak well-posedness of variational inequalities. Nonlinear Anal. 72, 373–381 (2010)

    Article  MathSciNet  Google Scholar 

  20. Huang, X.X., Yang, X.Q.: Generalized Levitin–Polyak well-posedness in constrained optimization. SIAM J. Optim. 17, 243–258 (2006)

    Article  MathSciNet  Google Scholar 

  21. Huang, X.X., Yang, X.Q.: Levitin–Polyak well-posedness of constrained vector optimization problems. J. Glob. Optim. 37, 287–304 (2007)

    Article  MathSciNet  Google Scholar 

  22. Khanh, P.Q., Plubtieng, S., Sombut, K.: LP well-posedness for bilevel vector equilibrium and optimization problems with equilibrium constraints. Abstr. Appl. Anal. 2014, 1–7 (2014)

    Article  MathSciNet  Google Scholar 

  23. Levitin, E.S., Polyak, B.T.: Convergence ofminimizing sequences in conditional extremum problem. Soiviet Math. Dokl. 7, 764–767 (1966)

    MATH  Google Scholar 

  24. Li, X.B., Xia, F.Q.: Levitin–Polyak well-posedness of a generalized mixed variational inequality in Banach spaces. Nonlinear Anal. 75, 2139–2153 (2012)

    Article  MathSciNet  Google Scholar 

  25. Lignola, M.B., Morgan, J.: Well-posedness for optimization problems with constraints defined by variational inequalities having a unique solution. J. Glob. Optim. 16, 57–67 (2000)

    Article  MathSciNet  Google Scholar 

  26. Lignola, M.B., Morgan, J.: \(\alpha \)-Well-posedness for Nash equilibria and for optimization problems with Nash equilibrium constraints. J. Glob. Optim. 36, 439–459 (2006)

    Article  MathSciNet  Google Scholar 

  27. Maugeri, A.: Variational and quasi-variational inequalities in network flow models. Recent developments in theory and algorithms. In: Giannessi, F., Maugeri, A. (eds.) Variational Inequalities and Network Equilibrium Problems. Plenum Press, New York (1995)

    MATH  Google Scholar 

  28. Mordukhovich, B.S.: Equilibrium problems with equilibrium constraints via multiobjective optimization. Optim. Methods Softw. 19, 479–492 (2004)

    Article  MathSciNet  Google Scholar 

  29. Mordukhovich, B.S.: Multiobjective optimization problems with equilibrium constraints. Math. Program. 117, 331–354 (2009)

    Article  MathSciNet  Google Scholar 

  30. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, II: Applications. Grundlehren Series (Fundamental Principles of Mathematical Sciences), vol. 331. Springer, Berlin (2006)

    Google Scholar 

  31. Moudafi, A.: Proximal methods for a class of bilevel monotone equilibrium problems. J. Glob. Optim. 47, 287–292 (2010)

    Article  MathSciNet  Google Scholar 

  32. Peng, J.W., Wu, S.Y., Wang, Y.: Levitin–Polyak well-posedness of generalized vector quasi-equilibrium problems with functional constraints. J. Glob. Optim. 52, 779–795 (2012)

    Article  MathSciNet  Google Scholar 

  33. Peng, J.W., Wang, Y., Wu, S.Y.: Levitin–Polyak well-posedness of generalized vector equilibrium problems. Taiwan. J. Math. 15, 2311–2330 (2011)

    Article  MathSciNet  Google Scholar 

  34. Rakocẽvíc, V.: Measures of noncompactnaess and some applications. Filomat 12, 87–120 (1998)

    MATH  Google Scholar 

  35. Smith, M.J.: The existence, uniqueness and stability of traffic equilibrium. Trans. Res. 138, 295–304 (1979)

    Article  Google Scholar 

  36. Tanaka, T.: Generalized semicontinuity and existence theorems for cone saddle points. Appl. Math. Optim. 36, 313–322 (1997)

    Article  MathSciNet  Google Scholar 

  37. Tikhonov, A.N.: On the stability of the functional optimization problem. Soviet Comput. Math. Math. Phys. 6, 28–33 (1966)

    Article  Google Scholar 

  38. Van Ackere, A.: The principal/agent paradigm: characterizations and computations. Eur. J. Oper. Res. 70, 83–103 (1993)

    Article  Google Scholar 

  39. Wangkeeree, R., Yimmuang, P.: Existence and algorithms for the bilevel new generalized mixed equilibrium problems in Banach spaces. Appl. Math. Comput. 219, 3022–3038 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Wardrop, J.G.: Some theoretical aspects of road traffic research. Proc. Inst. Civ. Eng. II, 325–378 (1952)

    Google Scholar 

  41. Ye, J.J., Zhu, Q.J.: Multiobjective optimization problems with variational inequality constraints. Math. Program. 96, 139–160 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous referees for the careful reviews and valuable comments that helped us significantly improve the presentation of the paper. This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 101.01-2017.18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Hung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anh, L.Q., Hung, N.V. Levitin–Polyak well-posedness for strong bilevel vector equilibrium problems and applications to traffic network problems with equilibrium constraints. Positivity 22, 1223–1239 (2018). https://doi.org/10.1007/s11117-018-0569-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-018-0569-2

Keywords

Mathematics Subject Classification

Navigation