, Volume 22, Issue 3, pp 897–918 | Cite as

On the L1-convergence and behavior of coefficients of Fourier–Vilenkin series

  • M. G. Grigoryan
  • S. A. Sargsyan


In this paper, we prove the following statement that is true for both bounded and some type of unbounded Vilenkin systems: for any \( \varepsilon \in (0,1)\), there exists a measurable set \(E\subset [0,1)\) of measure bigger than \(1-\varepsilon \) such that for any function \(f \in L^{1}[0,1)\), it is possible to find a function \(g\in L^{1}[0,1)\) coinciding with f on E, Fourier series of g with respect to Vilenkin system are convergent in \(L^{1}\)-norm and the absolute values of non zero Fourier coefficients of g are monotonically decreasing.


Vilenkin systems Convergence Fourier coefficients 

Mathematics Subject Classification

42C10 42C20 


  1. 1.
    Golubov, B.I., Efimov, A.V., Skvortsov, V.A.: Walsh Series and Transforms: Theory and Applications. Nauka, Moscow (1987)MATHGoogle Scholar
  2. 2.
    Golubov, B.I., Efimov, A.V., Skvortsov, V.A.: Walsh Series and Transforms: Theory and Applications. Kluwer Academic Publishers, Dordrecht (1991)CrossRefMATHGoogle Scholar
  3. 3.
    Agaev, G.N., Vilenkin, N.Y., Dzhafarli, G.M., Rubinshtejn, A.I.: Multiplicative Systems of Functions and Harmonic Analysis on Zero-Dimensional Groups, p. 180. Ehlm, Baku (1981). (in Russian)Google Scholar
  4. 4.
    Vilenkin, N.Y.: On a class of complete orthonormal systems. Am. Math. Soc. Transl. 2(28), 1–35 (1963)MathSciNetMATHGoogle Scholar
  5. 5.
    Blyumin, S.L.: Certain properties of a class of multiplicative systems and questions of approximation of functions by polynomials in these systems. Izv. Vyssh. Uchebn. Zaved. Mat. 4, 13–22 (1968)MathSciNetGoogle Scholar
  6. 6.
    Gosselin, J.A.: Convergence a.e. Vilenkin–Fourier series. Trans. Am. Math. Soc. 185, 345–370 (1973)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Price, J.J.: Certain groups of orthonormal step functions. Can. J. Math. 9(3), 413–425 (1957)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Zubakin, A.M.: The correction theorems of Men’sov for a certain class of multiplicative orthonormal systems of functions. Izv. Vyssh. Uchebn. Zaved. Mat. 12, 34–46 (1969)MathSciNetMATHGoogle Scholar
  9. 9.
    Watari, C.: On generalized Walsh Fourier series. Tohoku Math. J. (2) 73(8), 435–438 (1958)MATHGoogle Scholar
  10. 10.
    Young, W.-S.: Mean convergence of generalized Walsh–Fourier series. Trans. Am. Math. Soc. 218, 311–320 (1976)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Billard, P.: Sur la convergence presque partout des series de Fourier–Walsh des fonctions de l’espace \(L^2(0,1)\). Stud. Math. 28(3), 363–388 (1967)CrossRefMATHGoogle Scholar
  12. 12.
    Grigoryan, M.G., Sargsyan, S.A.: On the Fourier–Vilenkin coefficients. Acta Math. Sci. 37B(2), 293–300 (2017)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Luzin, N.N.: On the fundamental theorem of the integral calculus. Mat. Sb. 28(2), 266–294 (1912). (in Russian)Google Scholar
  14. 14.
    Men’shov, D.E.: Sur la representation des fonctions measurables des series trigonometriques. Mat. Sb. 9(3), 667–692 (1942)Google Scholar
  15. 15.
    Grigoryan, M.G.: On convergence of Fourier series in complete orthonormal systems in the \(L^{1}\) metric and almost everywhere. Math. USSR Sb. 70(2), 445–466 (1991)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Grigoryan, M.G.: On the representation of functions by orthogonal series in weighted \(L^{p}\) spaces. Stud. Math. 134(3), 207–216 (1999)CrossRefGoogle Scholar
  17. 17.
    Grigoryan, M.G.: On the \(L^{p}_{\mu }\)-strong property of orthonormal systems. Math. Sb. 194(10), 1503–1532 (2003)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Grigoryan, M.G., Zink, R.E.: Greedy approximation with respect to certain subsystems of the Walsh orthonormal system. Proc. Am. Math. Soc. 134(12), 3495–3505 (2006)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Grigoryan, M.G.: Modifications of functions, Fourier coefficients and nonlinear approximation. Math. Sb. 203(3), 351–379 (2012)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Episkoposian, S.A.: On the existence of universal series by trigonometric system. J. Funct. Anal. 230, 169–189 (2006)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Price, J.J.: Walsh series and adjustment of functions on small sets. Ill. J. Math. 13(1), 131–136 (1969)MathSciNetMATHGoogle Scholar
  22. 22.
    Galoyan, L.N.: On the convergence of Cesaro means of Fourier series with monotonically coefficients in the \(L^{1}\) metric. Izv. Vuzov. Math. 2, 24–30 (2016)MathSciNetMATHGoogle Scholar
  23. 23.
    Navasardyan, K.A.: On null-series by double Walsh system. J. Contemp. Math. Anal. 29(1), 50–68 (1994)MathSciNetMATHGoogle Scholar
  24. 24.
    Kobelyan, A.K.: Some property of Fourier-Haar coefficients. Adv. Theor. Appl. Math. 7(4), 433–438 (2012)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chair of Higher Mathematics, Faculty of PhysicsYerevan State UniversityYerevanRepublic of Armenia

Personalised recommendations