Advertisement

Positivity

, Volume 22, Issue 2, pp 575–586 | Cite as

On Cesàro summability of vector valued multiplier spaces and operator valued series

  • Bilal Altay
  • Ramazan Kama
Article

Abstract

In this paper, we introduce and study vector valued multiplier spaces with the help of the sequence of continuous linear operators between normed spaces and Cesàro convergence. Also, we obtain a new version of the Orlicz–Pettis Theorem by means of Cesàro summability.

Keywords

Multiplier convergent series Cesàro sequence spaces Summing operator Compact operators Orlicz–Pettis theorem 

Mathematics Subject Classification

Primary: 46B15 Secondary: 40A05 46B45 

Notes

Acknowledgements

The authors wish to thank the referee for his/her valuable suggestions, which improved the paper considerably.

References

  1. 1.
    Aizpuru, A., Pérez-Fernández, F.J.: Characterizations of series in Banach spaces. Math. Univ. Comen. 58(2), 337–344 (1999)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Aizpuru, A., Gutiérrez-Dávila, A., Sala, A.: Unconditionally Cauchy series and Cesàro summability. J. Math. Anal. Appl. 324, 39–48 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Altay, B., Başar, F.: Certain topological properties and duals of the domain of a triangle matrix in a sequence space. J. Math. Anal. Appl. 336(2), 632–645 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Başar, F.: Summability Theory and Its Applications. Bentham Science Publishers, İstanbul (2012)zbMATHGoogle Scholar
  5. 5.
    Bessaga, C., Pelczynski, A.: On bases and unconditional convergence of series in Banach spaces. Stud. Math. 17, 151–164 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kama, R., Altay, B.: Weakly unconditionally Cauchy series and Fibonacci sequence spaces. J. Inequal. Appl. 2017, 133 (2017). doi: 10.1186/s13660-017-1407-y
  7. 7.
    Kama, R., Altay, B.: Some sequence spaces and completeness of normed spaces. Creat. Math. Inform., (to appear)Google Scholar
  8. 8.
    Ng, P.-N., Lee, P.-Y.: Cesàro sequences spaces of non-absolute type. Comment. Math. Prace Mat. 20(2), 429–433 (1978)zbMATHGoogle Scholar
  9. 9.
    Pérez-Fernández, F.J., Benítez-Trujillo, F., Aizpuru, A.: Characterizations of completeness of normed spaces through weakly unconditionally Cauchy series. Czechoslov. Math. J. 50(125), 889–896 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ronglu, L., Qingying, B.: Locally convex spaces containing no copy of \(c_0\). J. Math. Anal. Appl. 172, 205–211 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Swartz, C.: Operator valued series and vector valued multiplier spaces. Casp. J. Math. Sci. 3(2), 277–288 (2014)MathSciNetGoogle Scholar
  12. 12.
    Swartz, C.: Multiplier Convergent Series. World Scientific Publishing, Singapore (2009)zbMATHGoogle Scholar
  13. 13.
    Swartz, C.: Orlicz–Pettis theorems for multiplier convergent operator valued series. Proyecciones 22(2), 135–144 (2003)MathSciNetGoogle Scholar
  14. 14.
    Şengönül, M., Başar, F.: Some new Cesàro sequence spaces of non-absolute type which include the spaces \(c_0\) and \(c\). Soochow J. Math. 31(1), 107–119 (2005)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of EducationInonu UniversityMalatyaTurkey
  2. 2.Department of MathematicsSiirt UniversitySiirtTurkey

Personalised recommendations