, Volume 22, Issue 2, pp 507–531 | Cite as

Off-diagonal estimates of some Bergman-type operators of tube domains over symmetric cones

  • Cyrille Nana
  • Benoît F. Sehba


We obtain some necessary and sufficient conditions for the boundedness of a family of positive operators defined on symmetric cones, we then deduce off-diagonal boundedness of associated Bergman-type operators in tube domains over symmetric cones.


Bergman projection Jordan algebra Symmetric cone 

Mathematics Subject Classification

Primary 47B34 26D15 32M15 Secondary 28A25 47G10 


  1. 1.
    Bansah, J.S., Sehba, B.F.: Boundedness of a family of Hilbert-type operators and its Bergman-type analogue. Ill. J. Math. 59(4), 949–977 (2015)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Békollé, D., Bonami, A.: Estimates for the Bergman and Szegő projections in two symmetric domains of \(\mathbb{C}^n\). Colloq. Math. 68, 81–100 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Békollé, D., Bonami, A.: Analysis on tube domains over light cones: some extensions of recent results. In: Actes des Rencontres d’Analyse Complexe, Poitiers 1999. Éd. Atlantique et ESA CNRS 6086, pp. 17–37 (2000)Google Scholar
  4. 4.
    Békollé, D., Bonami, A., Garrigós, G., Nana, C., Peloso, M., Ricci, F.: Lecture notes on Bergman projectors in tube domains over cones: an analytic and geometric viewpoint. IMHOTEP 5 (2004), Exposé I, Proceedings of the International Workshop in Classical Analysis, Yaoundé 2001Google Scholar
  5. 5.
    Békollé, D., Bonami, A., Garrigós, G., Ricci, F.: Littlewood-Paley decompositions related to symmetric cones and Bergman projections in tube domains. Proc. Lond. Math. Soc. 89, 317–360 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Békollé, D., Bonami, A., Garrigós, G., Ricci, F., Sehba, B.: Hardy-type inequalities and analytic Besov spaces in tube domains over symmetric cones. J. Reine Angew. Math. 647, 25–56 (2010)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Békollé, D., Bonami, A., Peloso, M., Ricci, F.: Boundedness of weighted Bergman projections on tube domains over light cones. Math. Z. 237, 31–59 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Békollé, D., Gonessa, J., Nana, C.: Lebesgue mixed norm estimates for bergman projectors: from tube domains over homogeneous cones to homogeneous siegel domains of type II. arXiv:1703.07854
  9. 9.
    Békollé, D., Nana, C.: \(L^p\)-boundedness of Bergman projections in the tube domain over Vinberg’s cone. J. Lie Theory 17(1), 115–144 (2007)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bonami, A.: Three related problems on Bergman spaces over symmetric cones. Rend. Mat. Acc. Lincei s. 9, v. 13, 183–197 (2002)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Bonami, A., Nana, C.: Some questions related to the Bergman projection in symmetric domains. Adv. Pure Appl. Math. 6(4), 191–197 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Bourgain, J., Demeter, C.: The proof of the \(l^2\)-decoupling conjecture. Ann. Math. 182(1), 351–389 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Debertol, D.: Besov spaces and boundedness of weighted Bergman projections over symmetric tube domains. Dottorato di Ricerca in Matematica, Università di Genova, Politecnico di Torino (April 2003)Google Scholar
  14. 14.
    Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Clarendon Press, Oxford (1994)zbMATHGoogle Scholar
  15. 15.
    Garrigós, G., Seeger, A.: Plate decompositions for cone multipliers. In: Miyachi and Tachizawa (ed.) Proceedings of “Harmonic Analysis and its Applications at Sapporo 2005”. Hokkaido University Report Series, vol. 103, pp. 13–28 (2005)Google Scholar
  16. 16.
    Nana, C.: \(L^{p, q}\)-boundedness of Bergman projections in homogeneous Siegel domains of type II. J. Fourier Anal. Appl. 19, 997–1019 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Nana C, C., Trojan, B.: \(L^p\)-boundedness of Bergman projections in tube domains over homogeneous cones. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) X, 477–511 (2011)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Okikiolu, G.O.: On inequalities for integral operators. Glasg. Math. J. 11(2), 126–133 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sehba, B.F.: Bergman type operators in tubular domains over symmetric cones. Proc. Edinb. Math. Soc. 52(2), 529–544 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sehba, B.F.: Sharp off-diagonal weighted norm estimates for the Bergman projection. arXiv:1703.00275
  21. 21.
    Zhao, R.: Generalization of Schur’s test and its application to a class of integral operators on the unit ball of \(C^n\). Integr. Eqs. Oper. Theory 82(4), 519–532 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceUniversity of BueaBueaCameroon
  2. 2.Department of MathematicsUniversity of GhanaLegon, AccraGhana

Personalised recommendations