, Volume 22, Issue 1, pp 261–274 | Cite as

An equivalent one level optimization problem to a semivectorial bilevel problem



In this paper, we are concerned with a bilevel optimization problem \(P_{0}\), where the lower level problem is a vector optimization problem. First, we give an equivalent one level optimization problem for which the nonsmooth Mangasarian–Fromowitz constraint qualification can hold at feasible solution. Using a special scalarization function, one deduces necessary optimality condition for the initial problem.


Bilevel optimization Convex function Clarke subdifferential Optimal value function Optimality conditions 

Mathematics Subject Classification

Primary 90C29 90C26 90C70 Secondary 49K99 



Thanks are due to the anonymous referees for the careful reading and the improvements they bring to our paper.


  1. 1.
    Babahadda, H., Gadhi, N.: Necessary optimality conditions for bilevel optimization problems using convexificators. J. Glob. Optim. 34, 535–549 (2006)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bard, J.F.: Some properities of the bilevel programming problem. J. Optim. Theory Appl. 68, 371–378 (1991)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Dempe, S.: A necessary and a sufficient optimality condition for bilevel programming problem. Optimization 25, 341–354 (1992)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Dempe, S., Gadhi, N.: Necessary optimality conditions for bilevel set optimization problems. J. Glob. Optim. 39, 529–542 (2007)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Dempe, S., Mehlitz, P.: A remark on semivectorial bilevel programming and an application in semivectorial bilevel optimal control. Preprint 12/ 2014, TU Bergakademie Freiberg, Fakultät für Mathematik und InformatikGoogle Scholar
  6. 6.
    Dempe, S.: First-order necessary optimality conditions for general bilevel programming problems. J. Optim. Theory Appl. 95, 735–739 (1997)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Dempe, S., Gadhi, N., Zemkoho, A.B.: New optimality conditions for the semivectorial bilevel optimization problem. J. Optim. Theory Appl. 157, 54–74 (2013)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Outrata, J.V.: On necessary optimality conditions for Stackelberg problems. J. Optim. Theory Appl. 76, 306–320 (1993)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Ye, J.J., Zhu, D.L.: Optimality conditions for bilevel programming problems. Optimization 33, 9–27 (1995)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Zhang, R.: Problems of hierarchical optimization in finite dimensions. SIAM J. Optim. 4, 521–536 (1993)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)MATHGoogle Scholar
  12. 12.
    Hiriart-Urruty, J.B.: Tangent cones, generalized gradients and mathematical programming in Banach spaces. Math. Oper. Res. 4, 79–97 (1979)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Hiriart-Urruty, J.B., Lemarechal, C.: Convex Analysis and Minimization Algorithms I. Springer, Berlin (1993)CrossRefMATHGoogle Scholar
  14. 14.
    Ciligot-Travain, M.: On Lagrange Kuhn Tucker multipliers for Pareto optimization problem. Numer. Funct. Anal. Optim. 15, 689–693 (1994)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Amahroq, T., Taa, A.: On Lagrange Kuhn Tucker multipliers for multiobjective optimization problems. Optimization 41, 159–172 (1997)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005)MATHGoogle Scholar
  17. 17.
    Jahn, J.: Vector Optimization. Springer, Berlin (2004)CrossRefMATHGoogle Scholar
  18. 18.
    Fiacco, A., Kyparisis, J.: Convexity and concavity properties of the optimal value function in nonlinear parametric programming. J. Optim. Theory Appl. 48, 95–126 (1986)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of MathematicsLSO, Sidi Mohamed Ben Abdellah UniversityFesMorocco

Personalised recommendations