Advertisement

Positivity

, Volume 21, Issue 1, pp 223–254 | Cite as

Calculus of directional subdifferentials and coderivatives in Banach spaces

  • Pujun Long
  • Bingwu Wang
  • Xinmin Yang
Article

Abstract

In this work we study the directional versions of Mordukhovich normal cones to nonsmooth sets, coderivatives of set-valued mappings, and subdifferentials of extended-real-valued functions in the framework of general Banach spaces. We establish some characterizations and basic properties of these constructions, and then develop calculus including sum rules and chain rules involving smooth functions. As an application, we also explore the upper estimates of the directional Mordukhovich subdifferentials and singular subdifferentials of marginal functions.

Keywords

Variational analysis Directional Mordukhovich subdifferential Directional Mordukhovich normal cone Directional Mordukhovich coderivative Generalized differential calculus Marginal function Directional differentiability Strict differentiability 

Mathematics Subject Classification

49J53 49J50 49J52 

References

  1. 1.
    Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. Springer, Berlin (2005)MATHGoogle Scholar
  2. 2.
    Chaney, R.W.: On second derivatives for nonsmooth functions. Nonlinear Anal. 9(11), 1189–1209 (1985)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chaney, R.W.: Second-order directional derivatives for nonsmooth functions. J. Math. Anal. Appl. 128(2), 495–511 (1987)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chaney, R.W.: Second-order necessary conditions in constrained semismooth optimization. SIAM J. Control Optim. 25(4), 1072–1081 (1987)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chou, C.C., Li, X., Ng, K.F., Shi, S.: Optimality conditions for lower semicontinuous functions. J. Math. Anal. Appl. 202(2), 686–701 (1996)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)MATHGoogle Scholar
  7. 7.
    Fabian, M.: Subdifferentiability and trustworthiness in the light of a new variational principle of Borwein and Preiss. Acta Universitatis Carolinae. Mathematica et Physica 30(2), 51–56 (1989)MathSciNetMATHGoogle Scholar
  8. 8.
    Fabian, M., Mordukhovich, B.S.: Sequential normal compactness versus topological normal compactness in variational Analysis. Nonlinear Anal. 53, 1057–1067 (2003)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Facchinei, F., Pang, J.-S.: Finite-dimensional Variational Inequalities and Complementary Problems, vols. I and II. Springer, New York (2003)Google Scholar
  10. 10.
    Gfrerer, H.: On directional metric regularity, subregularity and optimality conditions for nonsmooth mathematical programs. Set-Valued Var. Anal. 21(2), 151–176 (2013)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gfrerer, H.: Optimality conditions for disjunctive programs based on generalized differentiation with application to mathematical programs with equilibrium constraints. SIAM J. Optim. 24(2), 898–931 (2014)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Gfrerer, H., Klatte, D.: Lipschitz and Hölder stability of optimization problems and generalized equations. Math. Program. (2015). doi: 10.1007/s10107-015-0914-1 MATHGoogle Scholar
  13. 13.
    Ginchev, I., Mordukhovich, B.S.: On directionally dependent subdifferentials. C. R. Bulg. Acad. Sci. 64, 497–508 (2011)MathSciNetMATHGoogle Scholar
  14. 14.
    Ginchev, I., Mordukhovich, B.S.: Directional subdifferentials and optimality conditions. Positivity 16(4), 707–737 (2012)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Huang, L.R., Ng, K.F.: Second-order necessary and sufficient conditions in nonsmooth optimization. Math. Program. 66(1), 379–402 (1994)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Huang, L.R., Ng, K.F.: On some relations between Chaney’s generalized second order directional derivative and that of Ben-Tal and Zowe. SIAM J. Control Optim. 34(4), 1220–1235 (1996)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Ioffe, A.D.: Proximal analysis and approximate subdifferentials. J. Lond. Math. Soc. 41(2), 175–192 (1990)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory. Springer, Berlin (2006)Google Scholar
  19. 19.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation II: Applications. Springer, Berlin (2006)Google Scholar
  20. 20.
    Mordukhovich, B.S., Nam, N.M.: Variational stability and marginal functions via generalized differentiation. Math. Oper. Res. 30(4), 800–816 (2005)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Mordukhovich, B.S., Shao, Y.: On nonconvex subdifferential calculus in Banach spaces. J. Convex Anal. 2(1/2), 211–227 (1995)MathSciNetMATHGoogle Scholar
  22. 22.
    Mordukhovich, B.S., Shao, Y.: Extremal characterizations of Asplund spaces. Proc. Am. Math. Soc. 124(1), 197–205 (1996)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Mordukhovich, B.S., Shao, Y.: Nonsmooth sequential analysis in Asplund spaces. Trans. Am. Math. Soc. 348(4), 1235–1280 (1996)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Mordukhovich, B.S., Wang, B.: Calculus of sequential normal compactness in variational analysis. J. Math. Anal. Appl. 282, 63–84 (2003)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Mordukhovich, B.S., Wang, B.: Restrictive metric regularity and generalized subdifferential calculus in Banach spaces. Int. J. Math. Math. Sci. 50, 2650–2683 (2004)Google Scholar
  26. 26.
    Penot, J.P.: The directional subdifferential of the difference of two convex functions. J. Global Optim. 49(3), 505–519 (2010)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Penot, J.P.: Directionally limiting subdifferentials and second-order optimality conditions. Optim. Lett. 8(3), 1191–1200 (2013)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability, 2nd edn. Springer, Berlin (1993)MATHGoogle Scholar
  29. 29.
    Rockafellar, R.T.: First- and second-order epi-differentiability in nonlinear programming. Trans. Am. Math. Soc. 307(1), 75–108 (1988)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)Google Scholar
  31. 31.
    Rudin, W.: Functional Analysis, 2nd edn. McGraw-Hill, New York (1991)MATHGoogle Scholar
  32. 32.
    Wang, B., Yang, X.: Weak differentiability with applications to variational analysis. Set-Valued Var. Anal. (2015). doi: 10.1007/s11228-015-0341-8 MATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.School of Mathematical SciencesInner Mongolia UniversityHohhotPeople’s Republic of China
  2. 2.Department of MathematicsEastern Michigan UniversityYpsilantiUSA
  3. 3.College of Mathematical SciencesChongqing Normal UniversityChongqingPeople’s Republic of China

Personalised recommendations