, Volume 17, Issue 4, pp 1071–1083 | Cite as

Some relations between vector variational inequality problems and nonsmooth vector optimization problems using quasi efficiency

  • S. K. Mishra
  • B. B. Upadhyay


This paper deals with the relations between vector variational inequality problems and nonsmooth vector optimization problems using the concept of quasi efficiency. We identify the vector critical points, the weak quasi efficient points and the solutions of the weak vector variational inequality problems under generalized approximate convexity assumptions. To the best of our knowledge such results have not been established till now.


Nonsmooth optimization Quasi efficiency  Vector variational inequality Approximate convexity 

Mathematics Subject Classification (2000)

49J52 58E17 58E35 



The authors are grateful to the anonymous referees for their valuable suggestions that helped to improve the paper in its present form.


  1. 1.
    Bhatia, D., Gupta, A., Arora, P.: Optimality via generalized approximate convexity and quasiefficiency. Optim. Lett. doi: 10.1007/s11590-011-0402-3
  2. 2.
    Chen, G.Y., Craven, B.D.: A vector variational inequality and optimization over an efficient set. Z. Oper. Res. 34, 1–12 (1990)MathSciNetMATHGoogle Scholar
  3. 3.
    Chinchuluun, A., Pardalos, P.M.: A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154, 29–50 (2007)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chinchuluun, A., Pardalos, P.M., Migdalas, A., Pitsoulis, L. (eds.): Pareto Optimality. Game Theory and Equilibria. Springer, Berlin (2008)Google Scholar
  5. 5.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983)MATHGoogle Scholar
  6. 6.
    Dafermos, S.: Exchange price equilibrium and variational inequalities. Math. Program. 46, 391–402 (1990)Google Scholar
  7. 7.
    Deng, S.: On approximate solutions in convex vector optimization. SIAM J. Control Optim. 35, 2128–2136 (1997)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Dutta, J., Vetrivel, V.: On approximate minima in vector optimization. Numer. Funct. Anal. Optim. 22, 845–859 (2001)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Geofferion, A.M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22, 618–630 (1968)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Giannessi, F.: Theorems of the alternative, quadratic programming and complementarity problems. In: Cottle, R.W., Giannessi, F., Lions, J.L. (eds.) Variational Inequalities and Complementarity Problems, pp. 151–186. Wiley, New York (1980)Google Scholar
  11. 11.
    Giannessi, F.: On Minty variational principle. In: Giannessi, F., Komlósi, S., Rapcsák, T. (eds.) New Trends in Mathematical Programming, pp. 93–99. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  12. 12.
    Govil, M.G., Mehra, A.: \(\varepsilon \)-Optimality for multiobjective programming on a Banach space. Eur. J. Oper. Res. 157, 106–112 (2004)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Gupta, A., Mehra, A., Bhatia, D.: Approximate convexity in vector optimization. Bull. Aust. Math. Soc. 74, 207–218 (2006)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Gupta, D., Mehra, A.: Two types of approximate saddle points. Numer. Funct. Anal. Optim. 29, 532–550 (2008)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Hartman, P., Stampacchiya, G.: On some nonlinear elliptic differential functional equations. Acta Math. 115, 153–188 (1966)CrossRefGoogle Scholar
  16. 16.
    Kinderlehrer, D., Stampacchiya, G.: An Introduction to Variational Inequality and their Applications. Academic Press, London (1980)Google Scholar
  17. 17.
    Lee, G.M., Kim, D.S., Lee, B.S., Yen, N.D.: Vector variational inequality as a tool for studying vector optimization problems. Nonlinear Anal. 34, 745–765 (1998)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Lee, G.M., Lee, K.B.: Vector variational inequalities for nondifferentiable convex vector optimization problems. J. Glob. Optim. 32, 597–612 (2005)CrossRefMATHGoogle Scholar
  19. 19.
    Loridan, P.: \(\varepsilon \)-Solution in vector minimization problems. J. Optim. Theory. Appl. 43, 265–276 (1984)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Mangasarian, O.L.: Nonlinear Programming. McGraw-Hill, New York (1969)MATHGoogle Scholar
  21. 21.
    Minty, G.J.: On the generalization of a direct method of the calculus of variations. Bull. Am. Math. Soc. 73, 314–321 (1967)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Mishra, S.K., Wang, S.Y.: Vector variational like inequalities and nonsmooth vector optimization problems. Nonlinear Anal. 64, 1939–1945 (2006)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Mishra, S.K., Wang, S.Y., Lai, K.K.: Generalized Convexity and Vector Optimization: Nonconvex Optimization and Its Applications. Springer, Berlin (2009)Google Scholar
  24. 24.
    Mishra, S.K. (ed.): Topics in Nonconvex Optimization: Theory and Applications. Springer Science + Business Media, LLC., New York (2011)Google Scholar
  25. 25.
    Ngai, H.V., Luc, D.T., Thera, M.: Approximate convex functions. J. Nonlinear Convex Anal. 1, 155–176 (2000)MathSciNetMATHGoogle Scholar
  26. 26.
    Osuna-Gomez, R., Rufian-Lizana, A., Ruiz-Canales, P.: Invex functions and generalized convexity in multiobjective programming. J. Optim. Theory Appl. 98, 651–661 (1998)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Stampacchiya, G.: Formes bilineaires coercitives sur les ensembles convexes. C. R. Acad. Sci. 9, 4413–4416 (1960)Google Scholar
  28. 28.
    Yang, X.Q.: Generalized convex functions and vector variational inequalities. J. Optim. Theory Appl. 799, 563–580 (1993)CrossRefGoogle Scholar
  29. 29.
    Yang, X.Q.: Vector variational inequality and vector pseudolinear optimization. J. Optim. Theory Appl. 95, 729–734 (1997)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Yang, X.Q., Goh, C.J.: On vector variational inequality: application to vector equilibria. J. Optim. Theory Appl. 95, 431–443 (1997)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Yang, X.M., Yang, X.Q., Teo, K.L.: Some remarks on the Minty vector variational inequality. J. Optim. Theory Appl. 121, 193–201 (1994)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Yang, X.Q., Zheng, X.Y.: Approximate solutions and optimality conditions of vector variational inequalities in Banach spaces. J. Glob. Optim. 40, 455–462 (2008)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Faculty of Science, Department of MathematicsBanaras Hindu UniversityVaranasiIndia

Personalised recommendations