, Volume 17, Issue 3, pp 935–940 | Cite as

Strongly normal cones and the midpoint locally uniform rotundity



We give the method of construction of normal but not strongly normal positive cones.


Normal ordered cone Extreme points Midpoint locally uniform rotundity 

Mathematics Subject Classification (2000)

46B40 46B20 


  1. 1.
    Krein, M.: Proprie’te’s fondamentales des ensembles coniques normaux dans l’espace de Banach. C. R. (Doklady) Acad. Sci. URSS (N. S.) 28, 13–17 (1940). (French)MathSciNetGoogle Scholar
  2. 2.
    Emelyanov, E.Yu., Wolff, M.P.H.: Positive operators on Banach spaces ordered by strongly normal cones. Positivity 7(1–2), 3–22 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Emel’yanov. E.Yu. Non-spectral asymtotic analysis of one-parameter operator semigroups. Oper. Theory Adv. Appl., vol. 173. Birkhauser, Basel (2007)Google Scholar
  4. 4.
    Aliprantis, C.D., Tourky, R.: Cones and duality. Graduate studies in mathematics, vol. 84. American Mathematical Society, Providence (2007)Google Scholar
  5. 5.
    Rockafellar, R.T.: Convex analysis. Princeton University Press, Princeton (1970)MATHGoogle Scholar
  6. 6.
    Lovaglia, A.R.: Locally uniformly convex Banach spaces. Trans. Amer. Math. Soc. 78, 225–238 (1955)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Anderson, K.W.: Midpoint local uniform convexity, and other geometric properties of Banach spaces. Ph.D. dissertation, University of Illinois, Urbana (1960)Google Scholar
  8. 8.
    Cade\(\grave{\rm c}\), M.\(\check{\rm I}\).: Spaces isomorphic to a locally uniformly convex space. Izv. Vysš. Učebn. Zaved. Matematika 6(13), 51–57 (1959). (Russian)Google Scholar
  9. 9.
    Cade\(\grave{\rm c}\), M.\(\check{\rm I}\).: Relation between some properties of convexity of the unit ball of a Banach space. Funct. Anal. Appl. 16(3), 204–206 (1982)Google Scholar
  10. 10.
    Smith, M.A.: Some examples concerning rotundity in Banach spaces. Math. Ann. 233(2), 155–161 (1978)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations