Advertisement

Positivity

, Volume 16, Issue 1, pp 67–79 | Cite as

A very proper Heisenberg–Lie Banach *-algebra

  • Niels Jakob Laustsen
Article

Abstract

For each pair of non-zero real numbers q 1 and q 2, Laustsen and Silvestrov have constructed a unital Banach *-algebra \({\fancyscript{C}_{q_1,q_2}}\) which contains a universal normalized solution to the *-algebraic (q 1, q 2)-deformed Heisenberg–Lie commutation relations. We show that for (q 1, q 2) = (−1, 1), this Banach *-algebra is very proper; that is, if \({M\in\mathbb{N}}\) and \({a_1, \ldots, a_M}\) are elements of \({\fancyscript{C}_{-1,1}}\) such that \({\sum_{m=1}^M a_m^*a_m=0}\), then necessarily \({a_1=a_2=\cdots=a_M=0}\).

Keywords

Heisenberg–Lie commutation relations Banach *-algebra Very proper 

Mathematics Subject Classification (2010)

Primary 46K10 Secondary 43A20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dales H.G.: Banach algebras and automatic continuity. London Math. Soc. Monographs 24. Clarendon Press, Oxford (2000)Google Scholar
  2. 2.
    Kelley J.L., Vaught R.L.: The positive cone in Banach algebras. Trans. Amer. Math. Soc. 74, 44–55 (1953)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Laustsen N.J., Silvestrov S.D.: Heisenberg–Lie commutation relations in Banach algebras. Math. Proc. R. Irish Acad. 109A, 163–186 (2009)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Palmer, T.W.: Banach algebras and the general theory of *-algebras, vol. II: Encyclopedia Math. Appl. 79. Cambridge University Press, Cambridge (2001)Google Scholar
  5. 5.
    Sigurdsson G., Silvestrov S.D.: Bosonic realizations of the colour Heisenberg–Lie algebra. J. Nonlinear Math. Phys. 13, 110–128 (2006)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of Mathematics and Statistics, Fylde CollegeLancaster UniversityLancasterUK

Personalised recommendations