, Volume 14, Issue 4, pp 595–612 | Cite as

The Perron integral of order k in Riesz spaces



A Perron-type integral of order k for Riesz-space-valued functions is defined in terms of the Peano derivatives. Some fundamental properties of this integral, including an integration by parts formula, are presented.


Riesz space Perron integral k-convexity Peano derivative Major and minor function Maeda–Ogasawara–Vulikh theorem Integration by parts 

Mathematics Subject Classification (2000)

28B15 46G10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergin J.A.: A new characterization of Cesàro–Perron integrals using Peano derivatives. Trans. Amer. Math. Soc. 228, 287–305 (1977)MATHMathSciNetGoogle Scholar
  2. 2.
    Bernau S.J.: Unique representation of Archimedean lattice groups and normal Archimedean lattice rings. Proc. Lond. Math. Soc. 15, 599–631 (1965)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Boccuto A.: Differential and integral calculus in Riesz spaces. Tatra Mt. Math. Publ. 14, 293–323 (1998)MATHMathSciNetGoogle Scholar
  4. 4.
    Boccuto A.: A Perron-type integral of order 2 for Riesz spaces. Math. Slovaca 51, 185–204 (2001)MATHMathSciNetGoogle Scholar
  5. 5.
    Boccuto, A., Sambucini, A.R.: On the De Giorgi–Letta integral with respect to means with values in Riesz spaces. Real Anal. Exch. 21, 793–810 (1995/1996)Google Scholar
  6. 6.
    Boccuto A., Sambucini A.R., Skvortsov V.A.: Integration by parts for Perron type integrals of order 1 and 2 in Riesz spaces. Results Math. 51, 5–27 (2007)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Boccuto, A., Sambucini, A.R., Skvortsov, V.A.: Corrigendum to Integration by parts for Perron type integrals of order 1 and 2 in Riesz spaces. Results Math. (2010), to appearGoogle Scholar
  8. 8.
    Boccuto A., Sambucini A.R., Skvortsov V.A.: The Perron integral of order 2 in Riesz spaces via Peano derivatives. Commun. Appl. Nonlinear Anal. 16, 45–59 (2009)MATHMathSciNetGoogle Scholar
  9. 9.
    Boccuto A., Skvortsov V.A.: Remark on the Maeda–Ogasawara–Vulikh representation theorem for Riesz spaces and applications to differential calculus. Acta Math. Nitra 9, 13–24 (2006)MathSciNetGoogle Scholar
  10. 10.
    Bullen P.S.: A criterion for n-convexity. Pac. J. Math. 36, 81–98 (1971)MATHMathSciNetGoogle Scholar
  11. 11.
    Bullen P.S.: The P n-integral. J. Aust. Math. Soc. 14, 219–236 (1972)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Bullen P.S.: A survey of integration by parts for Perron integrals. J. Aust. Math. Soc. 40, 343–363 (1986)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Das U., Das A.G.: Integration by parts for some general integrals. Bull. Aust. Math. Soc. 37, 1–15 (1988)MATHCrossRefGoogle Scholar
  14. 14.
    James R.D.: A generalized integral II. Can. J. Math. 2, 297–306 (1950)MATHGoogle Scholar
  15. 15.
    James R.D.: Generalized n-th primitives. Trans Am. Math. Soc. 76, 149–176 (1954)MATHGoogle Scholar
  16. 16.
    James R.D.: Integrals and summable trigonometric series. Bull. Am. Math. Soc. 61, 1–15 (1955)MATHCrossRefGoogle Scholar
  17. 17.
    James R.D.: Summable trigonometric series. Pac. J. Math. 6, 99–110 (1956)MATHGoogle Scholar
  18. 18.
    Luxemburg W.A.J., Zaanen A.C.: Riesz Spaces, I. North-Holland Publishing Co., Amsterdam (1971)Google Scholar
  19. 19.
    Maeda F., Ogasawara T.: Representation of vector lattices. J. Sci. Hiroshima Univ. Ser. A 12, 17–35 (1942)MATHMathSciNetGoogle Scholar
  20. 20.
    Marcinkiewicz J., Zygmund A.: On the differentiability of functions and summability of trigonometric series. Fund. Math. 26, 1–43 (1936)Google Scholar
  21. 21.
    Schwabik Š.: Abstract Perron-Stieltjes integral. Math. Bohemica 121, 425–447 (1996)MATHMathSciNetGoogle Scholar
  22. 22.
    Schwabik Š.: A note on integration by parts for abstract Perron–Stieltjes integrals. Math. Bohemica 126, 613–629 (2001)MATHMathSciNetGoogle Scholar
  23. 23.
    Vulikh B.Z.: Introduction to the theory of partially ordered spaces. Wolters-Noordhoff  Sci. Publ., Groningen (1967)MATHGoogle Scholar
  24. 24.
    Zygmund A.: Trigonometric series, vol. I. Cambridge University Press, Cambridge (1968)Google Scholar

Copyright information

© Birkhäuser / Springer Basel AG 2010

Authors and Affiliations

  1. 1.Dipartimento di Matematica e InformaticaUniversity of PerugiaPerugiaItaly
  2. 2.Department of MathematicsMoscow State UniversityMoscowRussia
  3. 3.Instytut MatematykiUniwersytet Kazimierza WielkiegoBydgoszczPoland

Personalised recommendations