Skip to main content
Log in

Extending Lipschitz and Hölder maps between metric spaces

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

We introduce a stochastic generalization of Lipschitz retracts, and apply it to the extension problems of Lipschitz, Hölder, large-scale Lipschitz and large-scale Hölder maps into barycentric metric spaces. Our discussion gives an appropriate interpretation of a work of Lee and Naor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Ball, Markov chains, Riesz transforms and Lipschitz maps, Geom. Funct. Anal., 2 (1992), 137–172.

  2. K. Ball, E.A. Carlen, E.H. Lieb, Sharp uniform convexity and smoothness inequalities for trace norms, Invent. Math., 115 (1994), 463–482.

    Google Scholar 

  3. Y. Benyamini, J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Vol. 1. American Mathematical Society, Providence (2000).

  4. R.M. Dudley, Real Analysis and Probability, Revised reprint of the 1989 original, Cambridge University Press, Cambridge (2002).

  5. J.R. Isbell, Six theorems about injective metric spaces, Comment. Math. Helv., 39 (1964), 65–76.

    Google Scholar 

  6. M. Kozdoba, Extension of Banach space valued Lipschitz functions, Master thesis. Technion–Israel Institute of Technology, Haifa (2005).

  7. U. Lang, Extendability of large-scale Lipschitz maps, Trans. Am. Math. Soc., 351 (1999), 3975–3988.

    Google Scholar 

  8. U. Lang, B. Pavlović, V. Schroeder, Extensions of Lipschitz maps into Hadamard spaces, Geom. Funct. Anal., 10 (2000), 1527–1553.

  9. U. Lang, V. Schroeder, Kirszbraun’s theorem and metric spaces of bounded curvature, Geom. Funct. Anal., 7 (1997), 535–560.

    Google Scholar 

  10. J.R. Lee, A. Naor, Extending Lipschitz functions via random metric partitions, Invent. Math., 160 (2005), 59–95.

  11. A. Naor, A phase transition phenomenon between the isometric and isomorphic extension problems for Hölder functions between L p spaces, Mathematika, 48 (2001), 253–271.

  12. A. Naor, Y. Peres, O. Schramm, S. Sheffield, Markov chains in smooth Banach spaces and Gromov hyperbolic metric spaces, Duke Math. J., 134 (2006), 165–197.

    Google Scholar 

  13. S. Ohta, Convexities of metric spaces, Geom. Dedic., 125 (2007), 225–250.

  14. S. Ohta, Markov type of Alexandrov spaces of nonnegative curvature, preprint (2006).

  15. S.T. Rachev, Probability Metrics and the Stability of Stochastic Models, Wiley, Chichester (1991).

  16. S.T. Rachev, L. Rüschendorf, Mass Transportation Problems. Vol. I, Springer, New York (1998).

  17. K.-T. Sturm, Probability Measures on Metric spaces of Nonpositive Curvature, In: Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), Contemp. Math. 338 (2003), 357–390. American Mathematical Society, Providence.

  18. C. Villani, Topics in Optimal Transportation, American Mathematical Society, Providence (2003).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Ohta.

Additional information

Partly supported by the JSPS fellowship for research abroad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohta, Si. Extending Lipschitz and Hölder maps between metric spaces. Positivity 13, 407–425 (2009). https://doi.org/10.1007/s11117-008-2202-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-008-2202-2

Mathematics Subject Classification (2000)

Keywords

Navigation