Skip to main content
Log in

Banach–Stone Theorems for maps preserving common zeros

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

Let X and Y be completely regular spaces and E and F be Hausdorff topological vector spaces. We call a linear map T from a subspace of C(X, E) into C(Y, F) a Banach–Stone map if it has the form T f (y) =  S y (f (h(y))) for a family of linear operators S y : EF, \({y \in Y}\) , and a function h: YX. In this paper, we consider maps having the property:

$$\bigcap^{k}_{i=1}Z(f_{i}) \neq\emptyset \iff \bigcap^{k}_{i=1}Z(Tf_{i})\neq\emptyset , \quad({\rm Z}) $$

where Z(f) =  {f =  0}. We characterize linear bijections with property (Z) between spaces of continuous functions, respectively, spaces of differentiable functions (including C ), as Banach–Stone maps. In particular, we confirm a conjecture of Ercan and Önal: Suppose that X and Y are realcompact spaces and E and F are Hausdorff topological vector lattices (respectively, C *-algebras). Let T: C(X, E) → C(Y, F) be a vector lattice isomorphism (respectively, *-algebra isomorphism) such that

$$ Z(f) \neq\emptyset\iff Z(Tf) \neq\emptyset. $$

Then X is homeomorphic to Y and E is lattice isomorphic (respectively, C *-isomorphic) to F. Some results concerning the continuity of T are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araujo J.: Realcompactness and spaces of vector-valued continuous functions. Fundam. Math. 172, 27–40 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Araujo J.: Realcompactness and Banach–Stone theorems. Bull. Belg. Math. Soc. Simon Stevin 11, 247–258 (2004)

    MATH  MathSciNet  Google Scholar 

  3. Araujo J.: Linear biseparating maps between spaces of vector-valued differentiable functions and automatic continuity. Adv. Math. 187, 488–520 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Araujo J.: The noncompact Banach–Stone theorem. J. Operator Theory 55, 285–294 (2006)

    MATH  MathSciNet  Google Scholar 

  5. Araujo J., Beckenstein E., Narici L.: Biseparating maps and homoemorphic real-compactifications. J. Math. Anal. Appl. 192, 258–265 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Banach, S.: Théorie des Opérations Lineaires, Warszowa 1932. Reprinted, Chelsea Publishing Company, New York (1963)

  7. Behrends E.: M-structure and the Banach–Stone Theorem. Springer, Berlin (1978)

    Google Scholar 

  8. Chen J.-X., Chen Z.-L., Wong N.-C.: A Banach–Stone Theorem for Riesz isomorphisms of Banach lattices. Proc. Am. Math. Soc. 136, 3869–3874 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dugundji J.: Topology Allyn and Bacon, Inc.. Allyn and Bacon, Inc., Boston (1966)

    MATH  Google Scholar 

  10. Ercan Z., Önal S.: Banach–Stone Theorem for Banach lattice valued continuous functions. Proc. Am. Math. Soc. 135, 2827–2829 (2007)

    Article  MATH  Google Scholar 

  11. Ercan Z., Önal S.: The Banach–Stone Theorem revisited. Topol. Appl. 155, 1800–1803 (2008)

    Article  MATH  Google Scholar 

  12. Garrido M.I., Jaramillo J.A.: Variations on the Banach–Stone theorem. Extracta Math. 17, 351–383 (2002)

    MATH  MathSciNet  Google Scholar 

  13. Gau H.-W., Jeang J.-S., Wong N.-C.: Biseparating linear maps between continuous vector-valued function spaces. J. Aust. Math. Soc. 74, 101–109 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gillman, L., Jerison, M.: Rings of continuous functions. Graduate Texts in Mathematics, No. 43. Springer, New York (1976)

  15. Gelfand I., Kolmogorov A.: On rings of continuous functions on topological spaces. Dokl. Akad. Nauk. SSSR 22, 11–15 (1939)

    Google Scholar 

  16. Jeang J.-S., Wong N.-C.: On the Banach–Stone problem. Studia Math. 155, 95–105 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kaplansky I.: Lattices of continuous functions. Bull. Am. Math. Soc. 53, 617–623 (1947)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lang, S.: Real Analysis, 2nd edn. Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA (1983)

  19. Lin, Y.-F., Wong, N.-C.: The structure of compact disjointness preserving operators on continuous functions. Math. Nach. (to appear)

  20. Schaefer H.H.: Topological Vector Spaces. The Macmillan Co., New York (1966)

    MATH  Google Scholar 

  21. Stone M.H.: Applications of the theory of Boolean rings to general topology. Trans. Am. Math. Soc. 41, 375–481 (1937)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denny H. Leung.

Additional information

Research of D. H. Leung was partially supported by AcRF project no. R-146-000-086-112.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leung, D.H., Tang, WK. Banach–Stone Theorems for maps preserving common zeros. Positivity 14, 17–42 (2010). https://doi.org/10.1007/s11117-008-0002-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-008-0002-3

Mathematics Subject Classification (2000)

Navigation