Advertisement

Positivity

, Volume 12, Issue 3, pp 483–494 | Cite as

Viscosity approximation methods for a family of m-accretive mappings in reflexive Banach spaces

  • Yeol Je Cho
  • Xiaolong Qin
Article

Abstract

The purpose of this paper is to introduce a general iterative algorithm by viscosity method to approximate a common point of a finite family of m-accretive mappings in a reflexive Banach space which has a weakly continuous duality mapping. We obtain strong convergence theorems under some mild conditions imposed on parameters.

Mathematics Subject Classification (2000)

47H06 49H10 47J05 54H25 

Keywords

Accretive mapping Pseudo-contractive mapping m-accretive mapping reflexive Banach space weakly continuous duality mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.E. Bruck, Nonexpansive projections on subsets of Banach spaces, Pacific J. Math., 47 (1973), 341–355.Google Scholar
  2. 2.
    F.E. Browder, Fixed points theorems for noncompact mappings in Hilbert spaces, Proc. Natl. Acad. Sci. USA, 53 (1965), 1272–1276.Google Scholar
  3. 3.
    F.E. Browder, Convergence of approximations to fixed points of nonexpansive mappings in Banach spaces, Arch. Ration. Mech. Anal., 24 (1967), 82–90.Google Scholar
  4. 4.
    F.E. Browder, Covergence theorems for sequences of nonlinear operators in Banach space, Math. Z., 100 (1967) 201–225.Google Scholar
  5. 5.
    T.C. Lim, H.K. Xu, Fixed point theorems for asymptotically nonexpansive mappings, Nonlinear Anal., 22 (1994), 1345–1355.Google Scholar
  6. 6.
    F.E. Browder, Covergence theorems for sequences of nonlinear operators in Banach space, Math. Z., 100 (1967), 201–225.Google Scholar
  7. 7.
    R. Chen, Z. Zhu, Viscosity approximation fixed points for nonexpansive and m-accretive operators, doi: 10.1155/FPTA/2006/81325.
  8. 8.
    S.S. Chang, Viscosity approximation methods for a finite family of nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 323 (2006), 1402–1416.Google Scholar
  9. 9.
    T.D. Benavides, G.L. Acedo, H.K. Xu, Iterative solutions for zeros of accretive operators, Math. Nachr., 248–249 (2003), 62–71.Google Scholar
  10. 10.
    T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Appl., 61 (2005), 51–60.Google Scholar
  11. 11.
    A. Moudafi, Viscosity approximation methods for fixed points problems, J. Math. Anal. Appl., 241 (2000), 46–55.Google Scholar
  12. 12.
    X. Qin, Y. Su, Approximation of zero point of accretive operator in Banach spaces, J. Math. Anal. Appl., 329 (2007), 415–424.Google Scholar
  13. 13.
    S. Reich, Asymptotic behavior of contractions in banach spaces, J. Math. Anal. Appl., 44 (1973), 57–70.Google Scholar
  14. 14.
    T. Suzuki, Strong convergence theorems infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl. (2005), 103–123.Google Scholar
  15. 15.
    Y. Song, R. Chen, H. Zhou, Viscosity approximation methods for nonexpansive mapping sequences in Banach spaces, Nonlinear Anal., 66 (2007), 1016–1024.Google Scholar
  16. 16.
    S. Takahashi, W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 331 (2007), 506–515.Google Scholar
  17. 17.
    W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama (2000).Google Scholar
  18. 18.
    H.K. Xu, Strong convergence of an iterative method for nonexpansive and accretive opertors, J. Math. Anal. Appl., 314 (2006), 631–643.Google Scholar
  19. 19.
    H.K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., 298 (2004), 279–291.Google Scholar
  20. 20.
    H.K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66 (2002), 240–256.Google Scholar
  21. 21.
    H. Zegeyea, N. Shahzad, Strong convergence theorems for a common zero of a finite family of m-accretive mappings, Nonlinear Anal., 66 (2007), 1161–1169.Google Scholar
  22. 22.
    H. Yao, M.A. Noor, On viscosity iterative methods for variational inequalities, J. Math. Anal. Appl., 325 (2007), 776–787.Google Scholar
  23. 23.
    Y. Yao, A general iterative method for a finite family of nonexpansive mappings, Nonlinear Anal., 66 (2007), 2676–2687.Google Scholar
  24. 24.
    Y. Yao, R. Chen, H. Zhou, Iterative algorithms to fixed point of nonexpansive mapping, Acta Math. Sinica, Chinese Series, 50 (2007), 139–144.Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Mathematics Education and the RINSGyeongsang National UniversityChinjuKorea

Personalised recommendations