, Volume 12, Issue 1, pp 93–103 | Cite as

Positive Semigroups Behave Asymptotically as Rotation Groups



We use the full range of the Perron-Frobenius-Schaefer spectral theory and some results from harmonic analysis in order to characterize the asymptotic behavior of positive irreducible C0-semigroups on Banach lattices.

Mathematics Subject Classification (2000)

47D06 47B65 43A15 


Positive C0-semigroups asymptotics rotation groups compact solenoidal groups 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Arendt, C. J. K. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics 96, Birkhäuser (2001).Google Scholar
  2. 2.
    A. Deitmar, A First Course in Harmonic Analysis, Springer (2005).Google Scholar
  3. 3.
    B. Dorn, Semigroups for flows in infinite networks, preprint.Google Scholar
  4. 4.
    T. Eisner, Stability of operators and C0-semigroups, Dissertation Universität Tübingen (2007).Google Scholar
  5. 5.
    T. Eisner, B. Farkas, R. Nagel, A. Serény, Almost weak stability of C0-semigroups, to appear Int. J. Dyn. Syst. Diff. Equations.Google Scholar
  6. 6.
    K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Math., vol. 194, Springer (2000).Google Scholar
  7. 7.
    K.-J. Engel, R. Nagel, A Short Course on Operator Semigroups, Universitext, Springer (2006).Google Scholar
  8. 8.
    G. Greiner, Spektrum und Asymptotik stark stetiger Halbgruppen positiver Operatoren, Sitzungsber. Heidelb. Akad. Wiss. Math.-Natur. Kl., (1982), 55–80.Google Scholar
  9. 9.
    G. Greiner, Zur Perron-Frobenius-Theorie stark stetiger Halbgruppen, Math. Z., 177 (1981), 401–423.Google Scholar
  10. 10.
    G. Greiner, U. Groh, A Perron Frobenius theory for representations of locally compact abelian groups, Math. Ann., 262 (1983), 517–528.Google Scholar
  11. 11.
    E. Hewitt, K. A. Ross, Abstract Harmonic Analysis I, Springer (1979).Google Scholar
  12. 12.
    P. R. Halmos, Ergodic Theory, Chelsea Publishing Company (1956).Google Scholar
  13. 13.
    K. H. Hofmann, S. A. Morris, The Structure of Compact Groups, Gruyter Studies in Math., vol. 25, Berlin (1998).Google Scholar
  14. 14.
    M. Kramar, E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks, Math. Z., 249 (2005), 139–162.Google Scholar
  15. 15.
    U. Krengel, Ergodic Theorems, de Gruyter Studies in Mathematics, vol. 6, 1985.Google Scholar
  16. 16.
    T. Matrai, E. Sikolya, Asymptotic behavior of flows in networks, Forum Math., to appear.Google Scholar
  17. 17.
    P. Meyer-Nieberg, Banach Lattices, Springer (1991).Google Scholar
  18. 18.
    R. Nagel (ed.), One-parameter semigroups of positive operators, Lect. Notes Math., vol. 1184, Springer (1986).Google Scholar
  19. 19.
    R. Nagel, M. Wolff, Abstract dynamical systems with an application to operators with discrete spectrum, Arch. Math. 23, (1972), 170–176.Google Scholar
  20. 20.
    K. Petersen, Ergodic Theory, Cambridge Studies in Advanced Mathematics, vol. 2, 1983.Google Scholar
  21. 21.
    A. Radl, Transport processes in networks with scattering ramification nodes, J. Appl. Funct. Anal., to appear.Google Scholar
  22. 22.
    H. H. Schaefer, Banach Lattices and Positive Operators, Springer (1974).Google Scholar
  23. 23.
    H.-U. Schwarz, Banach Lattices and Operators, Teubner-Texte zur Mathematik, Leipzig (1984).Google Scholar
  24. 24.
    E. Sikolya, Flows in networks with dynamic ramification nodes, J. Evol. Equ., 5 (2005), 441–463.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  1. 1.Arbeitsgemeinschaft Funktionalanalysis, Mathematisches InstitutUniversität TübingenTübingenGermany

Personalised recommendations