, Volume 11, Issue 3, pp 469–475 | Cite as

Inequalities Characterizing Coisotone Cones in Euclidean Spaces



The isotone projection cone, defined by G. Isac and A. B. Németh, is a closed pointed convex cone such that the order relation defined by the cone is preserved by the projection operator onto the cone. In this paper the coisotone cone will be defined as the polar of a generating isotone projection cone. Several equivalent inequality conditions for the coisotonicity of a cone in Euclidean spaces will be given.

Mathematics Subject Classification (2000)

47H07 47H99 47H09 46A40 46B42 


Coisotone cones Isotone projection cones Latticial cones Polar of a cone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A. Haraux, How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities, J. Math. Soc. Japan 29(4) (1977), 615–631.Google Scholar
  2. J. B. Hiriart-Urruty, Unsolved problems: at what points is the projection mapping differentiable? Am. Math. Monthly 89(7) (1982), 456–458.Google Scholar
  3. R. B. Holmes, Smoothness of certain metric projections on Hilbert space, Trans. Am. Math. Soc. 184 (1973), 87–100.Google Scholar
  4. G. Isac, A. B. Németh, Monotonicity of metric projections onto positive cones of ordered Euclidean spaces, Arch. Math. 46(6) (1986), 568–576.Google Scholar
  5. G. Isac, A. B. Németh, Every generating isotone projection cone is latticial and correct, J. Math. Anal. Appl. 147(1) (1990), 53–62.Google Scholar
  6. G. Isac, A. B. Németh, Isotone projection cones in Hilbert spaces and the complementarity problem, Boll. Un. Mat. Ital. B 7(4) (1990), 773–802.Google Scholar
  7. G. Isac, A. B. Németh, Projection methods, isotone projection cones, and the complementarity problem, J. Math. Anal. Appl. 153(1) (1990), 258–275.Google Scholar
  8. G. Isac, A. B. Németh, Isotone projection cones in eucliden spaces, Ann. Sci. Math Québec 16(1) (1992), 35–52.Google Scholar
  9. G. Isac, L.-E. Persson, Inequalities Related to isotonicity of projection and antiprojection operators, Math. Inequalities Appl. 1(1) (1998), 85–97.Google Scholar
  10. A. B. Németh, Characterization of a Hilbert vector lattice by the metric projection onto its positive cone, J. Approx. Theory 123(2) (2003), 295–299.Google Scholar
  11. R. R. Phelps, Convex sets and nearest points, Proc. Am. Math. Soc. 8 (1957), 790–797.Google Scholar
  12. R. R. Phelps, Convex sets and nearest points. II, Proc. Am. Math. Soc. 9 (1958), 867–873.Google Scholar
  13. R. R. Phelps, Metric projection and the projection method in Banach spaces, SIAM J. Control Optim. 23(6) (1985), 973–977.Google Scholar
  14. R. R. Phelps, The gradient projection method using Curry’s steplength, SIAM J. Control Optim. 24(4) (1986), 692–699.Google Scholar
  15. A. Youdine, Solution de deux problèmes de la théorie de espaces semi-ordonnés, C. R. Acad. Sci. U.R.S.S. 27 (1939), 418–422.Google Scholar
  16. E.H. Zarantonello, (1971) Projection on convex sets in Hilbert spaces and spectral theory, Ed., Acad. Press, New York.Google Scholar

Copyright information

© Birkhäuser Verlag, Basel 2007

Authors and Affiliations

  1. 1.School of MathematicsThe University of BirminghamEdgbastonUnited Kingdom

Personalised recommendations