Advertisement

Positivity

, Volume 11, Issue 1, pp 191–199 | Cite as

Positivity Criteria Generalizing the Leading Principal Minors Criterion

  • Vyacheslav Futorny
  • Vladimir V. Sergeichuk
  • Nadya Zharko
Article

Abstract

An n×n Hermitian matrix is positive definite if and only if all leading principal minors Δ1, . . . ,Δn are positive. We show that certain sums δ l of l × l principal minors can be used instead of Δ l in this criterion. We describe all suitable sums δ l for 3 × 3 Hermitian matrices. For an n×n Hermitian matrix A partitioned into blocks A ij with square diagonal blocks, we prove that A is positive definite if and only if the following numbers σ l are positive: σ l is the sum of all l × l principal minors that contain the leading block submatrix [A ij ] k −1 i,j =1 (if k > 1) and that are contained in [A ij ] k i,j =1, where k is the index of the block A kk containing the (l, l) diagonal entry of A. We also prove that σ l can be used instead of Δ l in other inertia problems.

Mathematics Subject Classification (2000)

15A57 15A63 11E39 

Keywords

Hermitian matrices positive definiteness and semidefiniteness index of inertia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.E. Dickson, New First Course in the Theory of Equations, John Wiley and Sons, Inc., New York, 1939.Google Scholar
  2. 2.
    F.R. Gantmacher, The Theory of Matrices, vol. 1, Chelsea, New York, 1959.Google Scholar
  3. 3.
    R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge U. P., Cambridge, 1985.Google Scholar
  4. 4.
    A.I. Kostrikin, Introduction to Algebra, Springer-Verlag, 1982.Google Scholar
  5. 5.
    S.Ya. Stepanov, Symmetrization of the sign-definiteness criteria of symmetrical quadratic forms, J. Appl. Math. Mech. 66 (no. 6) (2002), 933–941.Google Scholar

Copyright information

© Birkhäuser Verlag, Basel 2006

Authors and Affiliations

  • Vyacheslav Futorny
    • 1
  • Vladimir V. Sergeichuk
    • 2
  • Nadya Zharko
    • 3
  1. 1.Department of MathematicsUniversity of São PauloSão PauloBrazil
  2. 2.Institute of MathematicsKievUkraine
  3. 3.Mech.-Math. FacultyKiev National UniversityKievUkraine

Personalised recommendations