, Volume 10, Issue 4, pp 795–807 | Cite as

On the Converse of Aliprantis and Burkinshaw's Theorem



We prove a complete converse of Aliprantis and Burkinshaw’s Theorem [2]. Also we obtain a generalization of Wickstead’s Theorem [9] about this converse, and we give some interesting consequences.

Mathematics Subject Classification (2000)

46A40 46B40 46B42 


Compact operator Lebesgue topology discrete vector lattice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.D. Aliprantis, O. Burkinshaw, Locally solid Riesz spaces, Academic Press, 1978.Google Scholar
  2. 2.
    C.D. Aliprantis, O. Burkinshaw, Positive compact operators on Banach lattices, Math. Z., 174 (1980), 289–298.Google Scholar
  3. 3.
    C.D. Aliprantis, O. Burkinshaw, M. Duhoux, Compactness properties of abstract kernel operators, Pacific journal of Math. vol., 100(1) (1982), 1–22.Google Scholar
  4. 4.
    C.D. Aliprantis, O. Burkinshaw, Positive operators, Academic Press, 1985.Google Scholar
  5. 5.
    B. Aqzzouz, R. Nouira, Les opérateurs précompacts sur les treillis vectoriels localement convexes-solides. Sci. Math. Jpn., vol. 57(2) (2003), 279–256.Google Scholar
  6. 6.
    B. Aqzzouz, R. Nouira, Sur les opérateurs précompacts positifs. C. R. Math. Acad. Sc. Paris, vol. 337(8) (2003), 527–530.Google Scholar
  7. 7.
    P.G. Dodds, D.H. Fremlin, Compact operators on Banach lattices, Isreal J. Math. 34 (1979), 287–320.Google Scholar
  8. 8.
    A.P. Robertson, W. Robertson, Topological vector spaces. 2nd Ed, Cambridge University Press, London 1973.Google Scholar
  9. 9.
    A.W. Wickstead, Positive compact operators on Banach lattices: some loose ends, Positivity 4 (2000), 313–325.Google Scholar

Copyright information

© Birkhäuser Verlag, Basel 2006

Authors and Affiliations

  1. 1.Faculté des Sciences, Département de Mathématiques, Laboratoire d'Analyse FonctionnelleUniversité Ibn TofailKénitraMorocco

Personalised recommendations