Advertisement

Positivity

, Volume 8, Issue 3, pp 257–267 | Cite as

The Dedekind Completion of d-Algebras

  • Elmiloud Chil
Article

Abstract

It is shown that the multiplication in an Archimedean d-algebra A can be extended to a multiplication in the Dedekind completion Aδ of A such that Aδ becomes a d-algebra with respect to this extended multiplication. This answers a question posed by Huijsmans in Studies in Economic Theory (Vol. 2, Springer, Berlin, 1991).

lattice-ordered algebra d-algebra universal completion of vector lattices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aliprantis, C.D and Burkinshaw, O.: Positive operators, Academic Press, Orlando, FL, 1985.Google Scholar
  2. 2.
    Bernau, S.J and Huijsmans, C.B.: Almost f-algebras and d-algebras, Math. Proc. Camb. Phil. Soc. 107(1990), 208–308.Google Scholar
  3. 3.
    Bernau, S.J and Huijsmans, C.B.: The Schwarz inequality in Archimedean f-algebras, Indeg. Math. 7(2) (1996), 137–148.CrossRefGoogle Scholar
  4. 4.
    Beukers, Huijsmans, C.B. and de Pagter, B.: Unital embedding and complexification of f-algebras, Math. Z. 183 (1983), 131–144.Google Scholar
  5. 5.
    Boulabiar, K.: A relationship between two almost f-algebra products, Algebra Univ. 43 (2000), 347–367.CrossRefGoogle Scholar
  6. 6.
    Boulabiar, K.: On the positive orthosymmetric bilinear maps, Submitted.Google Scholar
  7. 7.
    Boulabiar, K and Chil, E.: On the structure of Archimedean almost f-algebras, Demonstr. Math. 34 (2001), 749–760.Google Scholar
  8. 8.
    Buskes, G. and van Rooij, A.: Almost f-algebras: structure and the Dedekind completion, Positivity 4(3)(2000), 233–243.CrossRefGoogle Scholar
  9. 9.
    Huijsmans, C.B. and de Pagter, B.: Averaging operators and positive contractive projections, J. Math. Appl. 113 (1986), 163–184.CrossRefGoogle Scholar
  10. 10.
    Huijsmans, C.B. and de Pagter, B.: On von Neumann regular f-algebras, Order 2(4) (1986), 403–408.CrossRefGoogle Scholar
  11. 11.
    Huijsmans, C.B.: Lattice-ordered algebras and f-algebras: A survey, in: Studies in Economic Theory 2, Positive operators, Riesz Spaces and Economics, Springer, Berlin, (1991).Google Scholar
  12. 12.
    Huijsmans, C.B. and de Pagter, B.: Subalgebras and Riesz subspaces of an f-algebra, Proc. London, Math. Soc. 48 (1984), 161–154.Google Scholar
  13. 13.
    Luxembourg, W.A.J. and Zaanen, A.C.: Riesz Spaces I, North-Holland, Amsterdam, 1971.Google Scholar
  14. 14.
    de Pagter, B.: The space of extended orthomorphisms in a Riesz space, Pacific J. Math. 112(1)(1984), 193–210.Google Scholar
  15. 15.
    Zaanen, A.C.: Riesz Spaces II, North-Holland, Amsterdam, 1983.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Elmiloud Chil
    • 1
  1. 1.Institut Préparatoire aux Études d’Ingénieurs de TunisMonfleryTunisia

Personalised recommendations