Understanding the effects of travel demand management on metro commuters’ behavioural loyalty: a hybrid choice modelling approach

Abstract

As part of efforts to promote sustainable mobility, many cities are currently experiencing the rapid expansion of their metro network. The consequent growth in ridership motivates a broad range of travel demand management (TDM) policies, both in terms of passenger flow control and dynamic pricing strategies. This work aims to reveal the impact of TDM on metro commuters’ behavioural loyalty using stated-preference data collected in Guangzhou, China. Commuters’ behavioural response to TDM strategies is investigated in terms of the possible shift in departure time and travel mode. A hybrid choice model framework is used to incorporate four latent variables of interest, i.e., service quality, overall impression, external attractiveness and switching cost, into the discrete choice model and thereby capture the relationships between the attitudinal factors and observed variables. The model estimation results indicate that the four latent variables all prove useful in interpreting commuters’ behavioural loyalty. Commuters’ perceived service quality and overall impression both show a positive effect on their willingness to continue travelling by metro and are thus instructive for ridership retention. External attractiveness is found to be significant only in the case of the tendency to shift to a private car. Switching costs reveal commuters’ emotional attachment to their already developed commuting habit. These insights into commuters’ behavioural change intention enable metro operators to enhance commuters’ loyalty to their service and develop more effective TDM strategies in future practice.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abou-Zeid, M., Ben-Akiva, M.: Hybrid choice models. In: Hess, S., Daly, A. (Eds.), Handbook of Choice Modelling. Edward Elgar, Cheltenham. (2014)

  2. Abrate, G., Nicolau, J.L., Viglia, G.: The impact of dynamic price variability on revenue maximization. Tour. Manag. 74, 224–233 (2019). https://doi.org/10.1016/j.tourman.2019.03.013

    Article  Google Scholar 

  3. Ashok, K., Dillon, W.R., Yuan, S.: Extending discrete choice models to incorporate attitudinal and other latent variables. J. Mark. Res. 39, 31–46 (2002). https://doi.org/10.1509/jmkr.39.1.31.18937

    Article  Google Scholar 

  4. Atasoy, B., Glerum, A., Bierlaire, M.: Attitudes towards mode choice in Switzerland. Disp. 49, 101–117 (2013). https://doi.org/10.1080/02513625.2013.827518

    Article  Google Scholar 

  5. Aydin, S., Özer, G., Arasil, Ö.: Customer loyalty and the effect of switching costs as a moderator variable. A case in the Turkish mobile phone market. Mark. Intell. Plan. 23, 89–103 (2005). https://doi.org/https://doi.org/10.1108/02634500510577492

  6. Bahamonde-Birke, F.J., Kunert, U., Link, H., Ortúzar, J. de D.: About attitudes and perceptions: finding the proper way to consider latent variables in discrete choice models. Transportation (Amst). 44, 475–493 (2017). https://doi.org/https://doi.org/10.1007/s11116-015-9663-5

  7. Bandyopadhyay, S., Martell, M.: Does attitudinal loyalty influence behavioral loyalty? A theoretical and empirical study. J. Retail. Consum. Serv. 14, 35–44 (2007). https://doi.org/10.1016/j.jretconser.2006.03.002

    Article  Google Scholar 

  8. Bao, Y., Xu, M., Dogterom, N., Ettema, D.: Effectiveness investigation of travel demand management measures in Beijing: Existing measures and a potential measure–tradable driving credit. Transp. Res. Part F Traffic Psychol. Behav. 72, 47–61 (2020). https://doi.org/https://doi.org/10.1016/j.trf.2020.05.010

  9. Ben-Akiva, M., Mcfadden, D., Train, K., Walker, J., Bhat, C., Bierlaire, M., Bolduc, D., Boersch-Supan, A., Brownstone, D., Bunch, D.S., Daly, A., De Palma, A., Gopinath, D., Karlstrom, A., Munizaga, M.A.: Hybrid Choice Models: Progress and Challenges. Mark. Lett. 13, 163–175 (2002)(a). https://doi.org/https://doi.org/10.1023/A:1020254301302

  10. Ben-Akiva, M., Walker, J., Bernardino, A.T., Gopinath, D.A., Morikawa, T., Polydoropoulou, A.: Integration of Choice and Latent Variable Models. In Perpetual Motion. 431–470 (2002)(b). https://doi.org/https://doi.org/10.1016/b978-008044044-6/50022-x

  11. Berkowitz, E.N., Jacoby, J., Chestnut, R.: Brand Loyalty: Measurement and Management. John Wiley and Sons, New York (1978)

    Google Scholar 

  12. Bhat, C.R., Dubey, S.K.: A new estimation approach to integrate latent psychological constructs in choice modeling. Transp. Res. Part B Methodol. 67, 68–85 (2014). https://doi.org/10.1016/j.trb.2014.04.011

    Article  Google Scholar 

  13. Bierlaire, M.: Estimation of Discrete Choice Models with BIOGEME 1.8. Transport and Mobility Laboratory, EPFL, Lausanne (2009)

    Google Scholar 

  14. Bierlaire, M.: Monte-Carlo integration with PythonBiogeme. TRANSP-OR 150806. Series on Biogeme, Transport and Mobility Laboratory, EPFL, Lausanne (2015)

    Google Scholar 

  15. Bierlaire, M.: Pythonbiogeme: a short Introduction. Report TRANSP-OR 160706. Series on Biogeme, Transport and Mobility Laboratory, EPFL, Lausanne (2016a)

    Google Scholar 

  16. Bierlaire, M.: Estimating Choice Models with Latent Variables with PythonBiogeme. Report TRANSP-OR 160628. Series on Biogeme, Transport and Mobility Laboratory, EPFL, Lausanne (2016b)

    Google Scholar 

  17. Bolduc, D., Ben-Akiva, M., Walker, J., Michaud, A.: Hybrid choice models with logit Kernel: applicability to large scale models. Integr. Land Use Trans. Model. (2005). https://doi.org/10.1108/9781786359520-012

    Article  Google Scholar 

  18. Chen, S., Sun, G., Wei, Z., Wang, D.: Dynamic pricing in electricity and natural gas distribution networks: an EPEC model. Energy. 207, 118138 (2020). https://doi.org/10.1016/j.energy.2020.118138

    Article  Google Scholar 

  19. Daly, A., Hess, S., Patruni, B., Potoglou, D., Rohr, C.: Using ordered attitudinal indicators in a latent variable choice model: a study of the impact of security on rail travel behaviour. Transportation (Amst) 39, 267–297 (2012). https://doi.org/10.1007/s11116-011-9351-z

    Article  Google Scholar 

  20. Daziano, R.A.: Inference on mode preferences, vehicle purchases, and the energy paradox using a Bayesian structural choice model. Transp. Res. Part B Methodol. 76, 1–26 (2015). https://doi.org/10.1016/j.trb.2015.02.012

    Article  Google Scholar 

  21. Dick, A.S., Basu, K.: Customer loyalty: toward an integrated conceptual framework. J. Acad. Mark. Sci. 22, 99–113 (1994). https://doi.org/10.1177/0092070394222001

    Article  Google Scholar 

  22. Ding, C., Mishra, S., Lin, Y., Xie, B.: Cross-Nested Joint Model of Travel mode and departure time choice for urban commuting trips: case study in Maryland-Washington DC Region. J. Urban Plan. Dev. 141, 04014036 (2015). https://doi.org/10.1061/(asce)up.1943-5444.0000238

    Article  Google Scholar 

  23. Gao, K., Yang, Y., Sun, L., Qu, X.: Revealing psychological inertia in mode shift behavior and its quantitative influences on commuting trips. Transp. Res. Part F Traffic Psychol. Behav. 71, 272–287 (2020). https://doi.org/10.1016/j.trf.2020.04.006

    Article  Google Scholar 

  24. Guevara, C.A., Hess, S.: A control-function approach to correct for endogeneity in discrete choice models estimated on SP-off-RP data and contrasts with an earlier FIML approach by Train and Wilson. Transp. Res. Part B Methodol. 123, 224–239 (2019). https://doi.org/10.1016/j.trb.2019.03.022

    Article  Google Scholar 

  25. Hart, C.W., Heskett, J.L., Sasser, W.E.: The profitable art of service recovery. Harv. Bus. Rev. 68, 148–156 (1990)

    Google Scholar 

  26. Heinen, E., Harshfield, A., Panter, J., Mackett, R., Ogilvie, D.: Does exposure to new transport infrastructure result in modal shifts? Patterns of change in commute mode choices in a four-year quasi-experimental cohort study. J. Transp. Heal. 6, 396–410 (2017). https://doi.org/10.1016/j.jth.2017.07.009

    Article  Google Scholar 

  27. Hensher, D.A., Rose, J.M., Collins, A.T.: Identifying commuter preferences for existing modes and a proposed Metro in Sydney, Australia with special reference to crowding. Public Transp. 3, 109–147 (2011). https://doi.org/10.1007/s12469-010-0035-4

    Article  Google Scholar 

  28. Hess, S., Stathopoulos, A.: Linking response quality to survey engagement: a combined random scale and latent variable approach. J. Choice Model. 7, 1–12 (2013). https://doi.org/10.1016/j.jocm.2013.03.005

    Article  Google Scholar 

  29. Hess, S., Fowler, M., Adler, T., Bahreinian, A.: A joint model for vehicle type and fuel type choice: Evidence from a cross-nested logit study. Transportation (Amst). 39, 593–625 (2012). https://doi.org/10.1007/s11116-011-9366-5

    Article  Google Scholar 

  30. Hess, S., Spitz, G., Bradley, M., Coogan, M.: Analysis of mode choice for intercity travel: Application of a hybrid choice model to two distinct US corridors. Transp. Res. Part A Policy Pract. 116, 547–567 (2018). https://doi.org/10.1016/j.tra.2018.05.019

    Article  Google Scholar 

  31. Holguín-Veras, J., Amaya Leal, J., Sanchez-Diaz, I., Browne, M., Wojtowicz, J.: State of the art and practice of urban freight management Part II: Financial approaches, logistics, and demand management. Transp. Res. Part A Policy Pract. 137, 383–410 (2020). https://doi.org/10.1016/j.tra.2018.10.036

    Article  Google Scholar 

  32. Horiwitz, J., Koppelman, F., Lerman, S.: A self-instructing course in disaggregate mode choice modeling. Dot-T-93-18. 193 (1986)

  33. Hoyos, D., Mariel, P., Hess, S.: Incorporating environmental attitudes in discrete choice models: an exploration of the utility of the awareness of consequences scale. Sci. Total Environ. 505, 1100–1111 (2015). https://doi.org/10.1016/j.scitotenv.2014.10.066

    Article  Google Scholar 

  34. Huang, H.S., Hu, S.C., Lee, P.H., Tseng, Y.C.: An adaptive Paris Metro Pricing scheme for mobile data networks. Int. J. Netw. Manag. 26, 422–434 (2016). https://doi.org/10.1002/nem.1941

    Article  Google Scholar 

  35. Ibáñez, V.A., Hartmann, P., Calvo, P.Z.: Antecedents of customer loyalty in residential energy markets: Service quality, satisfaction, trust and switching costs. Serv. Ind. J. 26, 633–650 (2006). https://doi.org/10.1080/02642060600850717

    Article  Google Scholar 

  36. Izogo, E.E.: Determinants of attitudinal loyalty in Nigerian telecom service sector: Does commitment play a mediating role? J. Retail. Consum. Serv. 23, 107–117 (2015). https://doi.org/10.1016/j.jretconser.2014.12.010

    Article  Google Scholar 

  37. Jia, N., Li, L., Ling, S., Ma, S., Yao, W.: Influence of attitudinal and low-carbon factors on behavioral intention of commuting mode choice—a cross-city study in China. Transp. Res. Part A Policy Pract. 111, 108–118 (2018). https://doi.org/10.1016/j.tra.2018.03.010

    Article  Google Scholar 

  38. Jiang, M., Li, H.Y., Xu, X.Y., Xu, S.P., Miao, J.R.: Metro passenger flow control with station-to-station cooperation based on stop-skipping and boarding limiting. J. Cent. South Univ. 24, 236–244 (2017). https://doi.org/10.1007/s11771-017-3424-x

    Article  Google Scholar 

  39. Jones, M.A., Mothersbaugh, D.L., Beatty, S.E.: Switching barriers and repurchase intentions in services. J. Retail. 76, 259–274 (2000). https://doi.org/10.1016/S0022-4359(00)00024-5

    Article  Google Scholar 

  40. Jørgensen, S., Zaccour, G.: Optimal pricing and advertising policies for a one-time entertainment event. J. Econ. Dyn. Control. 100, 395–416 (2019). https://doi.org/10.1016/j.jedc.2019.01.007

    Article  Google Scholar 

  41. Kamandanipour, K., Mahdi Nasiri, M., Konur, D., Haji Yakhchali, S.: Stochastic data-driven optimization for multi-class dynamic pricing and capacity allocation in the passenger railroad transportation. Expert Syst. Appl. 158, 113568 (2020). https://doi.org/10.1016/j.eswa.2020.113568

    Article  Google Scholar 

  42. Kamargianni, M., Ben-Akiva, M., Polydoropoulou, A.: Incorporating social interaction into hybrid choice models. Transportation (Amst) 41, 1263–1285 (2014). https://doi.org/10.1007/s11116-014-9550-5

    Article  Google Scholar 

  43. Keyes, A.K.M., Crawford-Brown, D.: The changing influences on commuting mode choice in urban England under Peak Car: a discrete choice modelling approach. Transp. Res. Part F Traff. Psychol. Behav. 58, 167–176 (2018). https://doi.org/10.1016/j.trf.2018.06.010

    Article  Google Scholar 

  44. Kim, J., Rasouli, S., Timmermans, H.: Hybrid choice models: principles and recent progress incorporating social influence and nonlinear utility functions. Procedia Environ. Sci. 22, 20–34 (2014). https://doi.org/10.1016/j.proenv.2014.11.003

    Article  Google Scholar 

  45. Kim, J., Rasouli, S., Timmermans, H.: A hybrid choice model with a nonlinear utility function and bounded distribution for latent variables: application to purchase intention decisions of electric cars. Transp. A Transp. Sci. 12, 909–932 (2016). https://doi.org/10.1080/23249935.2016.1193567

    Article  Google Scholar 

  46. Kittelson & Associates Inc: Transit capacity and quality of service manual. Transit Cooper. Res. Prog. Web Doc. 6, 1–35 (1999)

    Google Scholar 

  47. Koppelman, F.S., Bhat, C.: A self instructing course in mode choice modeling : multinomial and nested logit models. Elements 28, 501–512 (2006)

    Google Scholar 

  48. Li, S., Dessouky, M.M., Yang, L., Gao, Z.: Joint optimal train regulation and passenger flow control strategy for high-frequency metro lines. Transp. Res. Part B Methodol. 99, 113–137 (2017). https://doi.org/10.1016/j.trb.2017.01.010

    Article  Google Scholar 

  49. Li, L., Bai, Y., Song, Z., Chen, A., Wu, B.: Public transportation competitiveness analysis based on current passenger loyalty. Transp. Res. Part A Policy Pract. 113, 213–226 (2018). https://doi.org/10.1016/j.tra.2018.04.016

    Article  Google Scholar 

  50. Liu, M.Y., Wang, J.W.: Pricing method of urban rail transit considering the optimization of passenger transport structure. J. Transp. Syst. Eng. Inf. Technol. 17, 53–59 (2017). https://doi.org/10.16097/j.cnki.1009-6744.2017.03.009

    Article  Google Scholar 

  51. Liu, R., Li, S., Yang, L.: Collaborative optimization for metro train scheduling and train connections combined with passenger flow control strategy. Omega (United Kingdom) (2020). https://doi.org/10.1016/j.omega.2018.10.020

    Article  Google Scholar 

  52. Losada-Rojas, L.L., Gkartzonikas, C., Pyrialakou, V.D., Gkritza, K.: Exploring intercity passengers’ attitudes and loyalty to intercity passenger rail: evidence from an on-board survey. Transp. Policy 73, 71–83 (2019). https://doi.org/10.1016/j.tranpol.2018.10.011

    Article  Google Scholar 

  53. Mijares, A.C.S., Suzuki, M., Yai, T.: An analysis of Metro Manila MRT-3 passengers perception of their commuting experience and its effects using structural equation modeling (SEM). Asian Transp. Stud. 4, 1–18 (2016). https://doi.org/10.11175/eastsats.4.1

    Article  Google Scholar 

  54. Mohammadoghli, N., Hassanzadeh, M., Esmaeli, E.: Key factors affecting customer loyalty in ISP (internet Service Provider) companies in Ardabil Province. Int. Res. J. Appl. Basic Sci. 4, 3411–3413 (2013)

    Google Scholar 

  55. Nesset, E., Helgesen, Ø.: Effects of switching costs on customer attitude loyalty to an airport in a multi-airport region. Transp. Res. Part A Policy Pract. 67, 240–253 (2014). https://doi.org/10.1016/j.tra.2014.07.003

    Article  Google Scholar 

  56. Nurul Habib, K.M.: Modeling commuting mode choice jointly with work start time and work duration. Transp. Res. Part A Policy Pract. 46(1), 33–47 (2012). https://doi.org/10.1016/j.tra.2011.09.012

    Article  Google Scholar 

  57. Odin, Y., Odin, N., Valette-Florence, P.: Conceptual and operational aspects of brand loyalty: an empirical investigation. J. Bus. Res. 53, 75–84 (2001). https://doi.org/10.1016/S0148-2963(99)00076-4

    Article  Google Scholar 

  58. Oliver, R.L.: Whence consumer loyalty. J. Mark. 63, 33–44 (1999)

    Article  Google Scholar 

  59. Parasuraman, A., Berry, L.L., Zeithaml, V.A., Kelley, S.W., Turley, L.: SERVQUAL: a multiple-item scale for measuring consumer perceptions of service quality. J. Retail. 64, 5–6 (1988)

    Google Scholar 

  60. Peng, Y., Yang, J., Zhao, X.: Research on the urban rail transit’s pricing with bi-level programming model based on particle swarm optimisation algorithm. J. Wuhan Univ. Tech. 40, 535–539 (2016)

    Google Scholar 

  61. Ping, R.A.: The effects of satisfaction and structural constraints on retailer exiting, voice, loyalty, opportunism, and neglect. J. Retail. 69, 320–352 (1993). https://doi.org/10.1016/0022-4359(93)90010-G

    Article  Google Scholar 

  62. Rantzien, V.H., Rude, A.: Peak-load pricing in public transport: a case study of Stockholm. J. Transp. Lit. 8, 52–94 (2014). https://doi.org/10.1590/s2238-10312014000100004

    Article  Google Scholar 

  63. Raveau, S., Yáñez, M.F., Ortúzar, J.D.: Practical and empirical identifiability of hybrid discrete choice models. Transp. Res. Part B Methodol. 46, 1374–1383 (2012). https://doi.org/10.1016/j.trb.2012.06.006

    Article  Google Scholar 

  64. Reichheld, F.F., Schefter, P.: E-loyalty: your secret weapon on the web. Harv. Bus. Rev. 78, 105–113 (2000)

    Google Scholar 

  65. Resdiansyah. : Travel mode choice preferences of urban commuters in Kuching City, Malaysia based on stated preference data. In: MATEC Web Conference, vol. 181, , pp. 02007 (2018). https://doi.org/https://doi.org/10.1051/matecconf/201818102007

  66. Roberts, J., Popli, G., Harris, R.J.: Do environmental concerns affect commuting choices? Hybrid choice modelling with household survey data. J. R Stat. Soc. Ser. A Stat. Soc. 181, 299–320 (2018). https://doi.org/10.1111/rssa.12274

    Article  Google Scholar 

  67. Roby, H.: A supplementary dictionary of transport studies. In: A Supplementary Dictionary of Transport Studies. Oxford University Press, Oxford (2014)

  68. Rosell, J., Allen, J.: Test-riding the driverless bus: determinants of satisfaction and reuse intention in eight test-track locations. Transp. Res. Part A Policy Pract. 140, 166–189 (2020). https://doi.org/10.1016/j.tra.2020.08.013

    Article  Google Scholar 

  69. Saharan, S., Bawa, S., Kumar, N.: Dynamic pricing techniques for Intelligent Transportation System in smart cities: a systematic review. Comput. Commun. 150, 603–625 (2020). https://doi.org/10.1016/j.comcom.2019.12.003

    Article  Google Scholar 

  70. Saleh, W.: Success and failure of travel demand management: is congestion charging the way forward? Transp. Res. Part A Policy Pract. 41, 611–614 (2007). https://doi.org/10.1016/j.tra.2006.09.014

    Article  Google Scholar 

  71. Sasic, A., Habib, K.N.: Modelling departure time choices by a Heteroskedastic Generalized Logit (Het-GenL) model: an investigation on home-based commuting trips in the Greater Toronto and Hamilton Area (GTHA). Transp. Res. Part A Policy Pract. 50, 15–32 (2013). https://doi.org/10.1016/j.tra.2013.01.028

    Article  Google Scholar 

  72. Shi, J., Yang, L., Yang, J., Zhou, F., Gao, Z.: Cooperative passenger flow control in an oversaturated metro network with operational risk thresholds. Transp. Res. Part C Emerg. Technol. 107, 301–336 (2019). https://doi.org/10.1016/j.trc.2019.08.008

    Article  Google Scholar 

  73. Song, F., Hess, S., Dekker, T.: Accounting for the impact of variety-seeking: Theory and application to HSR-air intermodality in China. J. Air Transp. Manag. 69, 99–111 (2018). https://doi.org/10.1016/j.jairtraman.2018.02.008

    Article  Google Scholar 

  74. Sun, S., Duan, Z.: Modeling passengers’ loyalty to public transit in a two-dimensional framework: A case study in Xiamen, China. Transp. Res. Part A Policy Pract. 124, 295–309 (2019). https://doi.org/10.1016/j.tra.2019.04.007

    Article  Google Scholar 

  75. Tao, S., Corcoran, J., Mateo-Babiano, I.: Modelling loyalty and behavioural change intentions of busway passengers: a case study of Brisbane. Australia. IATSS Res. 41, 113–122 (2017). https://doi.org/10.1016/j.iatssr.2016.10.001

    Article  Google Scholar 

  76. Thorhauge, M., Haustein, S., Cherchi, E.: Accounting for the theory of planned behaviour in departure time choice. Transp. Res. Part F Traffic Psychol. Behav. 38, 94–105 (2016). https://doi.org/10.1016/j.trf.2016.01.009

    Article  Google Scholar 

  77. Train, K.E., Wilson, W.W.: Monte Carlo analysis of SP-off-RP data. J. Choice Model. 2, 101–117 (2009). https://doi.org/10.1016/S1755-5345(13)70006-X

    Article  Google Scholar 

  78. Tran, Y., Yamamoto, T., Sato, H.: The influences of environmentalism and attitude towards physical activity on mode choice: The new evidences. Transp. Res. Part A Policy Pract. 134, 211–226 (2020). https://doi.org/10.1016/j.tra.2020.02.012

    Article  Google Scholar 

  79. Transportation Research Board: A Handbook for Measuring Customer Satisfaction and Service Quality (1999)

  80. van Lierop, D., Badami, M.G., El-Geneidy, A.M.: What influences satisfaction and loyalty in public transport? a review of the literature. Transp. Rev. 38, 52–72 (2018). https://doi.org/10.1080/01441647.2017.1298683

    Article  Google Scholar 

  81. Walker, J.L., Ben-Akiva, M., Bolduc, D.: Identification of parameters in normal error component logit-mixture (NECLM) models. J. Appl. Econ. 22, 1095–1125 (2007). https://doi.org/10.1002/jae.971

    Article  Google Scholar 

  82. Wang, J., Yamamoto, T., Liu, K.: Key determinants and heterogeneous frailties in passenger loyalty toward customized buses: an empirical investigation of the subscription termination hazard of users. Transp. Res. Part C Emerg. Technol. 115, 102636 (2020). https://doi.org/10.1016/j.trc.2020.102636

    Article  Google Scholar 

  83. Webb, V.: Customer Loyalty in the Public Transportation Context. Massachusetts Institute of Technology Department of Civil and Environmental Engineering, New York (2010)

    Google Scholar 

  84. Yan, H.Y.: The influence factors of customer loyalty and its mechanism of action. Zhejiang University, China Doctoral dissertation (2004)

  85. Yancey, J.W.S., Apple, J.K., Meullenet, J.F., Sawyer, J.T.: Consumer responses for tenderness and overall impression can be predicted by visible and near-infrared spectroscopy, Meullenet-Owens razor shear, and Warner-Bratzler shear force. Meat. Sci. 85, 487–492 (2010). https://doi.org/10.1016/j.meatsci.2010.02.020

    Article  Google Scholar 

  86. Yang, J., Jin, J.G., Wu, J., Jiang, X.: Optimizing passenger flow control and bus-bridging service for commuting metro lines. Comput. Civ. Infrastruct. Eng. 32, 458–473 (2017). https://doi.org/10.1111/mice.12265

    Article  Google Scholar 

  87. Zaman, H., Habib, K.M.N.: Commuting mode choice in the context of travel demand management (TDM) policies: an empirical investigation in Edmonton, Alberta. Can. J. Civ. Eng. 38, 433–443 (2011). https://doi.org/10.1139/l11-015

    Article  Google Scholar 

  88. Zeithaml, V.A., Berry, L.L., Parasuraman, A.: The behavioral consequences of service quality. J. Mark. 60, 31–46 (1996). https://doi.org/10.2307/1251929

    Article  Google Scholar 

  89. Zhang, J., Meng, M., Wang, D.Z.W.: A dynamic pricing scheme with negative prices in dockless bike sharing systems. Transp. Res. Part B Methodol. 127, 201–224 (2019). https://doi.org/10.1016/j.trb.2019.07.007

    Article  Google Scholar 

  90. Zhao, X., Yang, J.: Research on the bi-level programming model for ticket fare pricing of urban Rail transit based on particle swarm optimization algorithm. Procedia - Soc. Behav. Sci. 96, 633–642 (2013). https://doi.org/10.1016/j.sbspro.2013.08.074

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2018YFB1601300) and the Beijing Natural Science Foundation (No. 8171003). Stephane Hess acknowledges the support of the European Research Council through the consolidator grant 615596-DECISIONS.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Enjian Yao.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huan, N., Hess, S. & Yao, E. Understanding the effects of travel demand management on metro commuters’ behavioural loyalty: a hybrid choice modelling approach. Transportation (2021). https://doi.org/10.1007/s11116-021-10179-3

Download citation

Keywords

  • Behaviour change
  • Nested Logit model
  • SP-off-RP survey
  • Attitudinal factor
  • Urban rail transit