Skip to main content
Log in

A forward Markov model for predicting bicycle speed

  • Published:
Transportation Aims and scope Submit manuscript

Abstract

Speed prediction of different transport modes is important in applications such as route planning, transport modelling and energy calculations. In this paper we model bicycle speed as a function of slope and horizontal curvature. We developed two models, one with dependence between subsequent observations (a forward Markov model) and one without such a dependence (a generalised linear model). We show through prediction on out-of-sample data that the model including dependence between observations outperforms the model without. To estimate and evaluate our models we use a data set collected using a smart phone application. The data collected includes different sources of error, and therefore we introduce various filtering methods to make the data more appropriate for statistical analysis and model estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aitken, R.: Wilderness areas in Scotland. Ph.D. thesis, UNIVERSITY OF ABERDEEN (UNITED KINGDOM) (1977)

  • Assemi, B., Safi, H., Mesbah, M., Ferreira, L.: Developing and validating a statistical model for travel mode identification on smartphones. IEEE Trans. Intell. Transp. Syst. 17(7), 1920–1931 (2016)

    Article  Google Scholar 

  • Atkinson, G., Brunskill, A.: Pacing strategies during a cycling time trial with simulated headwinds and tailwinds. Ergonomics 43(10), 1449–1460 (2000)

    Article  Google Scholar 

  • Beheshtitabar, E., Rios, S., Konig-Hollerwoger, D., Svaty, Z.: Route choice modelling for bicycle trips. Int. J. Traffic and Transp. Eng. 4(2), 194–209 (2014)

    Article  Google Scholar 

  • Bernardi, S., Rupi, F.: An analysis of bicycle travel speed and disturbances on off-street and on-street facilities. Transp. Res. Procedia 5, 82–94 (2015)

    Article  Google Scholar 

  • Cangley, P., Passfield, L., Carter, H., Bailey, M.: The effect of variable gradients on pacing in cycling time-trials. Int. J. Sports Med. 32(02), 132–136 (2011)

    Article  Google Scholar 

  • Cascetta, E., Papola, A.: Random utility models with implicit availability/perception of choice alternatives for the simulation of travel demand. Transp. Res. Part C Emerg. Technol. 9(4), 249–263 (2001)

    Article  Google Scholar 

  • Dahmen, T., Byshko, R., Röder, M., Mantler, S., Saupe, D.: Modeling, Simulation and Validation of Cycling Time Trials on Real Tracks. IACSS, Canberra (2009)

    Google Scholar 

  • Dobson, A.J., Barnett, A.: An Introduction to Generalized Linear Models. CRC Press, Boca Raton (2008)

    Google Scholar 

  • El-Geneidy, A.M., Krizek, K.J., Iacono, M.: Predicting bicycle travel speeds along different facilities using GPS data: a proof of concept model. In: Proceedings of the 86th annual meeting of the transportation research board, Compendium of Papers (2007)

  • Figliozzi, M., Wheeler, N., Monsere, C.: Methodology for estimating bicyclist acceleration and speed distributions at intersections. Transp. Res. Rec. J. Transp. Res. Board 2387, 66–75 (2013)

    Article  Google Scholar 

  • Flügel, S., Hulleberg, N., Fyhri, A., Weber, C., Ævarsson, G.: Empirical speed models for cycling in the Oslo road network. Transportation (2017). https://doi.org/10.1007/s11116-017-9841-8

    Article  Google Scholar 

  • Gonzalez, P.A., Weinstein, J.S., Barbeau, S.J., Labrador, M.A., Winters, P.L., Georggi, N.L., Perez, R.: Automating mode detection for travel behaviour analysis by using global positioning systems-enabled mobile phones and neural networks. IET Intell. Transp. Syst. 4(1), 37–49 (2010)

    Article  Google Scholar 

  • Hassan, Y., Sarhan, M.: Modeling operating speed: synthesis report. Transportation Research E-Circular, E-C151 (2011)

  • Hawas, Y.E.: Development and calibration of route choice utility models: neuro-fuzzy approach. J. Transp. Eng. 130(2), 171–182 (2004)

    Article  Google Scholar 

  • Hood, J., Sall, E., Charlton, B.: A GPS-based bicycle route choice model for San Francisco, California. Transp. Lett. 3(1), 63–75 (2011)

    Article  Google Scholar 

  • Jiang, R., Hu, M.-B., Wu, Q.-S., Song, W.-G.: Traffic dynamics of bicycle flow: experiment and modeling. Transp. Sci. 51, 998–1008 (2016)

    Article  Google Scholar 

  • Krumm, J.: A Markov Model for Driver Turn Prediction. Tech. Rep, SAE Technical Paper (2008)

  • Langmuir, E.: Mountaincraft and Leadership: A Handbook for Mountaineers and Hillwalking Leaders in the British Isles. Scottish Sports Council, Edimburgh (1984)

    Google Scholar 

  • Liu, H., Chen, C., Fan, Y.: Apps and battery efficient technologies for smartphone-based travel data collection-state of the art. In: Transportation research board 95th annual meeting, No. 16-6184 (2016)

  • Manum, B., Nordstrom, T., Gil, J., Nilson, L., Marcus, L.: Modelling bikeability; space syntax based measure applied in examining speeds and flows og bicycling in Gothenburg. In: Proceedings of the 11th space syntax symposium (2017)

  • Manum, B., Nordstrom, T., Arnessen, P., Cooper, C., Gil, J., Dahl, E., Chan, R., Rokseth, L., Green, S.: Using realistic travel-time thresholds in accessibility measures of bicycle route networks. In: Proceedings of the 12th space syntax symposium (2019)

  • Martin, J.C., Gardner, A.S., Barras, M., Martin, D.T.: Modeling sprint cycling using field-derived parameters and forward integration. Med. Sci. Sports Exerc. 38(3), 592 (2006)

    Article  Google Scholar 

  • McHugh, B.: The opentripplanner project. The OpenTripPlanner Project, Technical Report, Metro RTO Grant Final Report, TriMet, 12–16 (2011)

  • Nitsche, P., Widhalm, P., Breuss, S., Brändle, N., Maurer, P.: Supporting large-scale travel surveys with smartphones—a practical approach. Transp. Res. Part C Emerg. Technol. 43, 212–221 (2014)

    Article  Google Scholar 

  • Ortuzar, J.D.D., Willumsen, L.G.: Modelling Transport. Wiley, West Sussex (2002)

    Google Scholar 

  • Parkin, J., Rotheram, J.: Design speeds and acceleration characteristics of bicycle traffic for use in planning, design and appraisal. Transp. Policy 17(5), 335–341 (2010)

    Article  Google Scholar 

  • Pritchard, R.: Data capture techniques for understanding cyclist route selection: a synthesis of the literature. In: European Transport Conference 2015 (2015)

  • Quattrone, A., Vitetta, A.: Random and fuzzy utility models for road route choice. Transp. Res. Part E Logist. Transp. Rev. 47(6), 1126–1139 (2011)

    Article  Google Scholar 

  • R Core Team: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2015)

    Google Scholar 

  • Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  • Romanillos, G., Zaltz Austwick, M., Ettema, D., De Kruijf, J.: Big data and cycling. Transp. Rev. 36(1), 114–133 (2016)

    Article  Google Scholar 

  • Rue, H., Held, L.: Gaussian Markov Random Fields: Theory and Applications. CRC Press, Boca Raton (2005)

    Book  Google Scholar 

  • Russo, F., Rindone, C., Panuccio, P.: European plans for the smart city: from theories and rules to logistics test case. Eur. Plann. Stud. 24(9), 1709–1726 (2016)

    Article  Google Scholar 

  • Ryeng, E.O., Haugen, T., Grønlund, H., Overå, S.B.: Evaluating bluetooth and wi-fi sensors as a tool for collecting bicycle speed at varying gradients. Transp. Res. Procedia 14, 2289–2296 (2016)

    Article  Google Scholar 

  • Safi, H., Assemi, B., Mesbah, M., Ferreira, L.: Trip detection with smartphone-assisted collection of travel data. Transp. Res. Rec. J. Transp. Res. Board 2594, 18–26 (2016)

    Article  Google Scholar 

  • Shen, L., Stopher, P.R.: Review of GPS travel survey and GPS data-processing methods. Transp. Rev. 34(3), 316–334 (2014)

    Article  Google Scholar 

  • Strauss, J., Miranda-Moreno, L.F.: Speed, travel time and delay for intersections and road segments in the Montreal network using cyclist smartphone GPS data. Transp. Res. Part D Transp. Environ. 57, 155–171 (2017)

    Article  Google Scholar 

  • Taylor, D., Davis, W.: Review of basic research in bicycle traffic science, traffic operations, and facility design. Transp. Res. Rec. J. Transp. Res. Board 1674, 102–110 (1999)

    Article  Google Scholar 

  • Vitetta, A.: A quantum utility model for route choice in transport systems. Travel Behav. Soc. 3, 29–37 (2016)

    Article  Google Scholar 

  • Williams, B.M., Hoel, L.A.: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results. J. Transp. Eng. 129(6), 664–672 (2003)

    Article  Google Scholar 

  • Xiao, G., Juan, Z., Zhang, C.: Travel mode detection based on GPS track data and Bayesian networks. Comput. Environ. Urban Syst. 54, 14–22 (2015)

    Article  Google Scholar 

  • Xu, C., Li, Q., Qu, Z., Tao, P.: Modeling of speed distribution for mixed bicycle traffic flow. Adv. Mech. Eng. 7(11), 1687814015616918 (2015)

    Google Scholar 

  • Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical world. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, 316–324 (2011)

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: literature review: Petter Arnesen and Olav Kåre Malmin; app development and data collection: Erlend Dahl; filtering and data preperation: Erlend Dahl and Petter Arnesen; model development and estimation: Petter Arnesen; analysis and interpretation of results: Petter Arnesen, Olav Kåre Malmin and Erlend Dahl; draft manuscript preparation: Petter Arnesen, Erlend Dahl and Olav Kåre Malmin. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Petter Arnesen.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnesen, P., Malmin, O.K. & Dahl, E. A forward Markov model for predicting bicycle speed. Transportation 47, 2415–2437 (2020). https://doi.org/10.1007/s11116-019-10021-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11116-019-10021-x

Keywords

Navigation