Transportation

, Volume 45, Issue 2, pp 545–572 | Cite as

The multi-objective network design problem using minimizing externalities as objectives: comparison of a genetic algorithm and simulated annealing framework

  • Bastiaan Possel
  • Luc J. J. Wismans
  • Eric C. Van Berkum
  • Michiel C. J. Bliemer
Article
  • 141 Downloads

Abstract

Incorporation of externalities in the Multi-Objective Network Design Problem (MO NDP) as objectives is an important step in designing sustainable networks. In this research the problem is defined as a bi-level optimization problem in which minimizing externalities are the objectives and link types which are associated with certain link characteristics are the discrete decision variables. Two distinct solution approaches for this multi-objective optimization problem are compared. The first heuristic is the non-dominated sorting genetic algorithm II (NSGA-II) and the second heuristic is the dominance based multi objective simulated annealing (DBMO-SA). Both heuristics have been applied on a small hypothetical test network as well as a realistic case of the city of Almelo in the Netherlands. The results show that both heuristics are capable of solving the MO NDP. However, the NSGA-II outperforms DBMO-SA, because it is more efficient in finding more non-dominated optimal solutions within the same computation time and maximum number of assessed solutions.

Keywords

Multi-objective network design problem Externalities Genetic algorithm Simulated annealing Accessibility Traffic safety Emission 

Notes

Acknowledgments

The authors are grateful for the financial contributions of Goudappel Coffeng and the ATMA (Advanced Traffic MAnagement) and Pay-as-you-drive projects of the TRANSUMO program. TRANSUMO (TRANsition SUstainable MObility) is a Dutch platform for companies, governments and knowledge institutes that cooperate in the development of knowledge with regard to sustainable mobility.

References

  1. Abdulaal, M., LeBlanc, L.J.: Continuous equilibrium network design models. Transp. Res. B 13B, 19–32 (1979)CrossRefGoogle Scholar
  2. Boyce, D.E., Janson, B.N.: A discrete transportation network design problem with combined trip distribution and assignment. Transp. Res. B 14B, 147–154 (1980)CrossRefGoogle Scholar
  3. Bureau of Public Roads: Traffic assignment manual, Urban Planning Division. US Department of Commerce, Washington DC (1964)Google Scholar
  4. Burke, E.K., Kendall, G.: Search methodologies: introductory tutorials in optimization and decision support techniques. In: Sastry, K., Goldberg, D., Kendall, G. (eds.) Chapter 4: genetic algorithms. Springer Science + Business Media, Inc, Berlin (2005)Google Scholar
  5. Cantarella, G.E., Pavone, G., Vitetta, A.: Heuristics for urban road network design: lane layout and signal settings. Euro. J. Oper. Res. 175, 1682–1695 (2006)CrossRefGoogle Scholar
  6. Chiou, S.: Bi-level programming for the continuous transport network design problem. Transp. Res. Part B 39, 361–383 (2005)CrossRefGoogle Scholar
  7. CROW (2004). Richtlijn essentiële herkenbaarheidkenmerken van weginfrastructuur: wegwijzer voor implementatie. Publicatie 203. CROW kenniscentrum voor verkeer, vervoer en infrastructuur, EdeGoogle Scholar
  8. Dantzig, G.B., Harvey, R.P., Lansdowne, Z.F., Robinson, D.W., Maier, S.F.: Formulating and solving the network design problem by decomposition. Transp. Res. B 13B, 5–17 (1978)Google Scholar
  9. Drezner, Z., Wesolowsky, G.O.: Network design: selection and design of links and facility location. Transp. Res. Part A 37, 241–256 (2003)Google Scholar
  10. Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, New York (2001)Google Scholar
  11. Deb K, Agrawal S, Pratap A and Meyarivan T.: A Fast elitist no dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Proceedings of sixth international conference on parallel problem solving from nature (PPSN VI), Paris, France, September 2000, pp. 849–858. Springer, Berlin (2000)Google Scholar
  12. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.A.: A fast elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  13. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Res. Logist. Quart. 3, 95–110 (1956)CrossRefGoogle Scholar
  14. Friesz, T.L., Cho, H.J., Mehta, N.J., Tobin, R.L., Anandalingham, G.: A simulated annealing approach to the network design problem with variational inequality constraints. Transp. Sci. 26, 18–26 (1992)CrossRefGoogle Scholar
  15. Friesz, T.L., Anandalingam, G., Mehta, N.J., Nam, K., Shah, S.J., Tobin, R.L.: The multi-objective equilibrium network design problem revisited —A simulated annealing approach. Eur. J. Oper. Res. 65, 44–57 (1993)CrossRefGoogle Scholar
  16. Gao, Z., Wu, J., Sun, H.: Solution algorithm for the bi-level discrete network design problem. Transp. Res. Part B 39, 479–495 (2005)CrossRefGoogle Scholar
  17. Johnson, D.S., Lenstra, J.K., Rinooy Kan, A.H.G.: The complexity of the network design problem. Networks 8, 279–285 (1978)CrossRefGoogle Scholar
  18. Karoonsoontawong, A. and Waller, S.T.: Dynamic continuous network design problem—Linear bi-level programming and meta-heuristic approaches. Network Modeling 2006, Transp. Res. Rec., 104–117 (2006)Google Scholar
  19. Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Saf. 91, 992–1007 (2006)CrossRefGoogle Scholar
  20. LeBlanc, L.J.: An algorithm for the discrete network design problem. Transp. Sci. 9, 183–199 (1975)CrossRefGoogle Scholar
  21. LeBlanc, L.J., Abdulaal, M.: An efficient dual approach to the urban network design problem. Comput. & Math. Appl. 5, 11–19 (1978)CrossRefGoogle Scholar
  22. Loon Van, A.A.P.M., Wismans, L.J.J.: Gebiedsgericht Benutten plus Duurzaam Veilig met RBV. Verkeerskunde DVM-congres 2007 (2007)Google Scholar
  23. Mathew, T. V., S. Sharma.: Continuous network design with emission pricing as a bi-level optimization problem. Applications of advanced technology in transportation. In: Proceedings of the Ninth international conference on applications of advanced technology in transportation, Chicago, IL (2006)Google Scholar
  24. Mathew, T.V., Sharma, S.: Capacity Expansion Problem for Large Urban Transportation Networks. J. Transp. Eng. ASCE 135(7), 406–415 (2009)CrossRefGoogle Scholar
  25. Mathew, T.V., Sharma, S.: Multiobjective network design for emission and travel-time trade-off for a sustainable large urban transportation network. Environ. Plan. B Plan. Des. 38, 520–538 (2011)CrossRefGoogle Scholar
  26. Memon, G.Q., Bullen, A.G.R.: Multivariant optimization strategies for real-time traffic control signals. Transp. Res. Rec. 1554, 36–42 (1997)CrossRefGoogle Scholar
  27. Meng, Q., Yang, H., Bell, M.G.H.: An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem. Transp. Res. Part B 35, 83–105 (2001)CrossRefGoogle Scholar
  28. Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer (VROM): Meet- en rekenvoorschriften voor luchtkwaliteit, www.vrom.nl (2006) (last visit: 14-08-2009)
  29. Poorzahedy, H., Turnquist, M.A.: Approximate algorithms for the discrete network design problem. Transp. Res. B 16B, 45–55 (1982)CrossRefGoogle Scholar
  30. Poorzahedy, H., Rouhani, O.M.: Hybrid meta-heuristic algorithms for solving network design problem. Eur. J. Oper. Res. 182, 578–596 (2007)CrossRefGoogle Scholar
  31. Sharma, S., Ukkusuri, S.V., Mathew, T.V.: Pareto optimal multi-objective optimization for robust transportation network design problem. Transp. Res. Rec. 2090, 95–104 (2009)CrossRefGoogle Scholar
  32. Sharma, S., Mathew, T.V.: Multi-objective network design for emission and travel-time trade-off for a sustainable large urban transportation network. Environ. Plann. B 38, 520–538 (2011)CrossRefGoogle Scholar
  33. Smith, K.I.: A study of simulated annealing techniques for multi-objective optimization. Thesis for the degree of Doctor of Philosophy in Computer Science at the University of Exeter, Exeter (2006)Google Scholar
  34. Steenbrink, P.A.: Optimization of transport network. John Wiley, New York (1974)Google Scholar
  35. Tan, K.C., Khor, E.F., Lee, T.H.: Multiobjective evolutionary algorithms and applications. Springer, London (2005)Google Scholar
  36. Tzeng, G.H., Tsaur, S.H.: Application of multiple criteria decision making for network improvement. J. Adv. Transp. 31(1), 49–74 (1997)CrossRefGoogle Scholar
  37. Wismans, L.J.J., van Berkum, E.C., Bliemer, M.C.J.: Comparison of multiobjective evolutionary algorithms for optimization of externalities using dynamic traffic management measures. Transp. Res. Rec. 2263, 163–173 (2011)CrossRefGoogle Scholar
  38. Wismans, L.J.J., Brands, T., Van Berkum, E.C., Bliemer, M.C.J.: Pruning and ranking the Pareto optimal set, application for the dynamic multi-objective network design problem. J. Adv. Transp. 48(6), 588–607 (2014)CrossRefGoogle Scholar
  39. Xu, T., Wei, H., Wang, Z.: Study on continuous network design problem using simulated annealing and genetic algorithm. Exp. Syst. Appl. 36, 2735–2741 (2009)CrossRefGoogle Scholar
  40. Yang, H., Bell, M.G.H.: Models and algorithms for road network design: a review and some new developments. Transp. Rev. 18(3), 257–278 (1998)CrossRefGoogle Scholar
  41. Yin, Y.: Multiobjective bilevel optimization for transport planning and management problems. J. Adv. Transp. 36(1), 93–105 (2002)CrossRefGoogle Scholar
  42. Zhang, G., Lu, J.: Genetic algorithm for continuous network design problem. J. Transp. Syst. Eng. Inform. Technol. 7, 101–105 (2007)Google Scholar
  43. Zhao, F., Zeng, X.: Simulated annealing-genetic algorithm for transit network optimization. J. Comput. Civil Eng. 20, 57–68 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Bastiaan Possel
    • 1
  • Luc J. J. Wismans
    • 1
    • 2
  • Eric C. Van Berkum
    • 2
  • Michiel C. J. Bliemer
    • 3
  1. 1.Goudappel CoffengDeventerThe Netherlands
  2. 2.Centre for Transport StudiesUniversity of TwenteEnschedeThe Netherlands
  3. 3.Institute of Transport and Logistics StudiesThe University of Sydney Business SchoolSydneyAustralia

Personalised recommendations