Advertisement

Transportation

, Volume 41, Issue 2, pp 397–417 | Cite as

Learning-based framework for transit assignment modeling under information provision

  • Mohamed Wahba
  • Amer Shalaby
Article

Abstract

The modeling of service dynamics has been the focus of recent developments in the field of transit assignment modeling. The emerging focus on dynamic service modeling requires a corresponding shift in transit demand modeling to represent appropriately the dynamic behaviour of passengers and their responses to Intelligent Transportation Systems technologies. This paper presents the theoretical development of a departure time and transit path choice model based on the Markovian Decision Process. This model is the core of the MIcrosimulation Learning-based Approach to TRansit Assignment. Passengers, while traveling, move to different locations in the transit network at different points in time (e.g. at stop, on board), representing a stochastic process. This stochastic process is partly dependent on the transit service performance and partly controlled by the transit rider’s trip choices. This can be analyzed as a Markovian Decision Process, in which actions are rewarded and hence passengers’ optimal policies for maximizing the trip utility can be estimated. The proposed model is classified as a bounded rational model, with a constant utility term and a stochastic choice rule. The model is appropriate for modeling information provision since it distinguishes between individual’s experience with the service performance and information provided about system dynamics.

Keywords

Travel choice Markovian decision process Learning Information provision 

Notes

Acknowledgments

This research was supported by the Natural Sciences and Engineering Research Council (NSERC) and the Ontario Graduate Scholarship (OGS) Program.

References

  1. Arentze, T.A., Timmermans, H.J.P.: Modeling learning and adaptation processes in activity-travel choice: a framework and numerical experiments. Transportation 30, 37–62 (2003). doi: 10.1023/A:1021290725727 CrossRefGoogle Scholar
  2. Cantarella, G.E., Cascetta, E.: Dynamic processes and equilibrium in transportation networks: towards a unifying theory. Transp. Sci. 29, 305–329 (1995). doi: 10.1287/trsc.29.4.305 CrossRefGoogle Scholar
  3. Cascetta, E., Cantarella, G.E.: A day-to-day and within-day dynamic stochastic assignment model. Transp. Res. A 25, 277–291 (1991). doi: 10.1016/0191-2607(91)90144-F CrossRefGoogle Scholar
  4. Davis, G.A., Nihan, N.L.: Large population approximations of a general stochastic traffic assignment model. Oper. Res. 41, 169–178 (1993). doi: 10.1287/opre.41.1.169 CrossRefGoogle Scholar
  5. de Palma, A., Marchal, F.: Real cases applications of the fully dynamic METROPOLIS tool-box: an advocacy for large-scale mesoscopic transportation systems. Netw Spat. Econ. 2, 347–369 (2002). doi: 10.1023/A:1020847511499 CrossRefGoogle Scholar
  6. Ettema, D., Tamminga, G., Timmermans, H.J.P., Arentze, T.: A micro-simulation model system of departure time using a perception updating model under travel time uncertainty. Transp. Res. A 39, 325–344 (2005). doi: 10/1016/j.tra.2004.12.002 Google Scholar
  7. Hazelton, M., Watling, D.: Computation of equilibrium distributions of Markov traffic assignment models. Transp. Sci. 38, 331–342 (2004). doi: 10.1287/trsc.l030.0052 CrossRefGoogle Scholar
  8. Hickman, M., Berstein, D.: Transit service and path choice models in stochastic and time-dependent networks. Transp. Sci. 31, 129–146 (1997). doi: 10.1287/trsc.31.2.129 CrossRefGoogle Scholar
  9. Kucirek, P., Wahba, M., Miller, E.J.: Fare-based transit assignment models: comparing the accuracy of strategy-based aggregate model EMME, against microsimulation model MILATRAS, using trips crossing the Mississauga-Toronto boundary. University of Toronto DMG Research Reports. http://www.dmg.utoronto.ca/pdf/reports/research/kucirekp_gta_transitfares.pdf (2012). Accessed March 2012
  10. Lau, J., Hatzopoulou, M., Wahba, M., Miller, E.J.: An integrated multi-model evaluation of transit bus emissions in Toronto. J. Transp. Res. Rec. 2216, 1–9 (2010). doi: 10.3141/2216-01 CrossRefGoogle Scholar
  11. Nakayama, S., Kitamura, R., Fuji, S.: Drivers’ learning and network behaviour: a dynamic analysis of the driver-network system as a complex system. Transp. Res. Rec. 1676, 30–36 (1999). doi: 10.3141/1676-04 CrossRefGoogle Scholar
  12. Nuzzolo, A., Russo, F., Crisalli, U.: A doubly dynamic schedule-based assignment model for transit networks. Transp. Sci. 35(3), 268–285 (2001). doi: 10.1287/trsc.35.3.268.10149 CrossRefGoogle Scholar
  13. Nuzzolo, A., Russo, F., Crisalli, U.: Transit Networking Modelling: The Schedule-Based Approach Dynamic Approach. FrancoAngeli, Milan (2003)Google Scholar
  14. Petersen, K.: Ergodic Theory, 1st edn. Cambridge University Press, Cambridge (1990)Google Scholar
  15. Roorda, M.J., Miller, E.J.: Assessing transportation policy using an activity-based microsimulation model of travel demand. ITE J. 76, 16–21 (2006)Google Scholar
  16. Rossetti, R.J.F., Liu, R.: A multi-agent approach to assess drivers responses to pre-trip information systems. J. Intell. Transp. Syst. 9, 1–10 (2005). doi: 10.1080/15472450590912529 CrossRefGoogle Scholar
  17. Russell, S.: Learning agents for uncertain environments (extended abstract). In: COLT’ 98 Proceedings of the Eleventh Annual Conference on Computational Learning Theory (1998). doi: 10.1145/279943.279964
  18. Salvini, P., Miller, E.J.: ILUTE: an operational prototype of a comprehensive microsimulation model of urban systems. Netw. Spat. Econ. 5, 217–234 (2003). doi: 10.1007/s11067-005-2630-5 CrossRefGoogle Scholar
  19. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT Press, Cambridge (1998)Google Scholar
  20. Timmermans, H.J.P., Arentze, T., Ettema, D.: Learning and adaptation behaviour: empirical evidence and modeling issues. In: Proceedings ITS Conference, Eindhoven (2003)Google Scholar
  21. Wahba, M.: MILATRAS: MIcrosimulation Learning-based Approach to Transit Assignment. University of Toronto, Dissertation (2008)Google Scholar
  22. Wahba, M., Shalaby, A.: MILATRAS: a new modeling framework for the transit assignment problem. In: Wilson, N.H.M., Nuzzolo, A. (eds.) Schedule-based Modeling of Transportation Networks: Theory and Applications, pp. 171–194. Springer, New York (2009)Google Scholar
  23. Wahba, M., Shalaby, A.: Large-scale application of MILATRAS: case study of the Toronto transit network. Transportation 38, 889–908 (2011). doi: 10.1007/s11116-011-9358-5 CrossRefGoogle Scholar
  24. Wang, J., Wahba, M., Miller, E.J.: Comparison of agent-based transit assignment procedure with conventional approaches. J. Trans. Res. Rec. 2175, 47–56 (2010). doi: 10.3141/2175-06 CrossRefGoogle Scholar
  25. Watkins, C.J.C.H.: Learning from delayed rewards. Dissertation, University of Cambridge (1989)Google Scholar
  26. Watling, D.: Asymmetric problems and stochastic process models of traffic assignment. Transp. Res. B 30, 339–357 (1996). doi: 10.1016/0191-2615(96)00006-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Civil Engineering DepartmentUniversity of TorontoTorontoCanada

Personalised recommendations