, Volume 39, Issue 6, pp 1335–1351 | Cite as

Generation of logistics networks in freight transportation models

  • Gernot Liedtke
  • Hanno Friedrich


This article analyzes the concept of logistics networks in the context of behavioral freight transport modeling. Starting from the basic definition of networks, the different perceptions of networks in transportation science and logistics are worked out. The micro–macro gap, as a main challenge in freight transport modeling, is explained by the existence of logistics networks on a meso level. A taxonomy of modeling methods dealing with logistics networks is defined, based on two characteristics: the changeability of networks within models (fixed, partially variable and variable networks) and the form of cost functions mapped (economies of scale, constant average cost, and diseconomies of scale). For each category, different possible modeling methods and their application in existing freight transport models are discussed. A special focus is placed on methodologies and models that map variable networks.


Logistics networks Behavioral models Freight transportation models Commercial transport Micro-macro gap Freight planning 



Parts of this publication had been elaborated within the project “RM-LOG” funded by the Federal Ministry of Education and Research within the framework of the Federal Government’s “Research for Civil Security” program.


  1. Anderson, S.P., de Palma, A.: Multiproduct firms: a nested logit approach. J. Ind. Econ. 40(3), 261–276 (1991)CrossRefGoogle Scholar
  2. Bossel, H.: Modellbildung und Simulation. Konzepte, Verfahren und Modelle zum Verhalten Dynamischer Systeme. Vieweg-Verlag, Braunschweig (1994)Google Scholar
  3. Bryan, D., O’Kelly, M.E.: Hub and spoke networks in air transportation: an analytical review. J. Reg. Sci. 39(2), 275–295 (1998)CrossRefGoogle Scholar
  4. Bröcker, J.: Operational spatial computable general equilibrium modelling. Ann. Reg. Sci. 32(3), 367–387 (1998)CrossRefGoogle Scholar
  5. Carrillo Murillo, D.G.: Demand and Supply Interactions in Transport Models: The Case of Hinterland Transportation. PhD Thesis, KIT, Karlsruhe (2010)Google Scholar
  6. Cascetta, E.: Transportation Systems Analysis: Models and Applications. Springer, Boston (2009)CrossRefGoogle Scholar
  7. Chow, J.Y.J., Yang, C.H.Y., Regan, A.C.: State-of-the art of freight forecast modeling: lessons learned and the road ahead. Transportation 37(6), 1011–1030 (2010)CrossRefGoogle Scholar
  8. Daganzo, C.F.: Logistic System Analysis, 4th edn. Springer, Berlin; Heidelberg, New York (2005). ISBN 3-540-23914-6Google Scholar
  9. De Jong, G., Gunn, H., Walker, W.: National and international freight transport models: an overview and ideas for future development. Transp. Rev. 24(1), 103–124 (2004)CrossRefGoogle Scholar
  10. Dixit, A.K., Stiglitz, J.E.: Monopolistic competition and optimal product diversity. Am. Econ. Rev. 67(3), 297–308 (1977)Google Scholar
  11. Domschke, W.: Logistik: Transport, 5th edn. Oldenbourg, Munchen (Weitere Bände: Logistik: Rundreisen und Touren, logistik: Standorte) (2007). ISBN 978-3486582901 Google Scholar
  12. Fisk, C.: Some developments in equilibrium traffic assignment. Transp. Res. B: Methodol. 14(3), 243–255 (1980)CrossRefGoogle Scholar
  13. Friedrich, H.: Simulation of logistics in food retailing for freight transportation analysis. Dissertation, KIT, Institut für Wirtschaftspolitik und Wirtschaftsforschung (IWW) (2010)Google Scholar
  14. Groothedde, B.: Collaborative Logistics and Transportation Networks—A Modelling Approach to Hub Network Design, Trail-Thesis Series T2005/15. The Netherlands Trail Research School, Delft (2005). ISBN 9055840718Google Scholar
  15. Gudehus, T.: Logistik, Grundlagen, Strategien, Anwendungen, 3rd edn. Springer, Berlin (2005)Google Scholar
  16. Heinitz, F., Liedtke, G.: Principles of constraint-consistent activity-based transport modeling. Comp-Aided Civil Infrastruct. Eng. CACAIE 25(2), 101–115 (2010)CrossRefGoogle Scholar
  17. Holmgren, J.: On the Integration of Optimization and Agent Technology for Transportation and Production Planning. Blekinge Institute of Technology doctoral dissertation series No. 2010:09 (2010). ISSN 1653-2090Google Scholar
  18. Ivanova, O., Heyndrickx, C., Spitaels, K., Tavasszy, L., Manshanden, W., Snelder, M., Koops, O.: RAEM: version 3.0 first report, transport and mobility leuven. (2007)
  19. Jourquin, B., Beuthe, M.: Multimodal freight network analysis with NODUS, a survey of several applications. Transp. Plan. Technol. 4(3) (2001)Google Scholar
  20. Jourquin, B.: A multi-flow multi-modal assignment procedure on large freight transportation networks. Stud. Reg. Sci. 35(4), 929–946 (2005)CrossRefGoogle Scholar
  21. Kondratjew, N.D.: Die langen Wellen der Konjunktur. In: Lederer, E. (ed.) Archiv für Sozialwissenschaft und Sozialpolitik, vol. 56, pp. 573–609. J.C.B. Mohr, Tübingen (1926)Google Scholar
  22. Liedtke, G.: An Actor-based Approach to Commodity Transport Modelling. Nomos-Verlag, Baden–Baden (2006)Google Scholar
  23. Liedtke, G.: Principles of micro-behaviour commodity transport modelling. Transp. Res. E 45, 795–809 (2009)CrossRefGoogle Scholar
  24. Lohse, D., Teichert, H., Dugge, B., Bachner, G.: Ermittlung von Verkehrsströmen mit n-linearen Gleichungssystemen. In: Schriftenreihe des Instituts für Vrkehrsplanung und Straßenverkehr der TU Dresden, Nr. 5 (1997)Google Scholar
  25. Marshall, A.: Principles of Economics, Revised edn. Prometheus Books, Macmillan (1920). ISBN 1573921408Google Scholar
  26. Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford, New York (1995)Google Scholar
  27. Maurer, H.: Development of an integrated model for estimating emissions from freight transport. PhD thesis, University of Leeds, Institute for Transport Studies (2008)Google Scholar
  28. McFadden, D.: Lecture at the opening ceremony of the WCTR. University of California, Berkeley (2007)Google Scholar
  29. Nagurney, A.: Supply chain network design under profit maximisation and oligopolistic competition. Transp. Res. E 46, 281–294 (2010)CrossRefGoogle Scholar
  30. Nagurney, A., Dong, J.: Supernetworks: Decision-Making for the Information Age. Edward Elgar, London (2002)Google Scholar
  31. Newman, M.: Networks: An Introduction. Oxford University Press, New York (2010)Google Scholar
  32. Neumann, K., Morlock, M.: Operations Research. Carl Hanser Verlag München, (1993). ISBN 3-446-15771-9Google Scholar
  33. North, D.C.: Institutions. J. Econ. Perspect. 5(1), 97–112 (1991)CrossRefGoogle Scholar
  34. Ortuzár, J.  de.  D., Willumsen, L.G.: Modelling Transport. Wiley, Chichester (1990)Google Scholar
  35. Pritchard, D.R., Miller, E.J.: Advances in agent population synthesis and application in an integrated land use/transportation model. Paper presented at TRB conference (2009)Google Scholar
  36. Ramstedt, L.: Transport policy analysis using multi-agent-based simulation. Doctoral dissertation series No. 2008:09, School of Engineering, Blekinge Institute of Technology, Karlskrona (2008)Google Scholar
  37. Roorda, M.J., Cavalcante, R., McCabe, S., Kwan, H.: A conceptual framework for agent-based modelling of logistics services. Transp. Res. E 46, 18–31 (2010)CrossRefGoogle Scholar
  38. Samimi, A., Kawamura, K., Mohammadian, K.: A behavioral analysis of freight mode choice decisions. J. Transp. Plan. Technol. 34(3) (2011)Google Scholar
  39. Schumpeter, J.A.: Theorie der Wirtschaftlichen Entwicklung. Springer, Berlin (1952)Google Scholar
  40. Sheffi, Y.: Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods. Prentice-Hall, New Jersey (1985)Google Scholar
  41. Sheffi, Y., Daganzo, C.: Hypernetworks and supply-demand equilibrium with disaggregate demand models. Transp. Res. Rec. 673, 121–1213 (1979)Google Scholar
  42. Simon, Herbert A.: The Science of the Artificial. The MIT Press, Cambridge (1996). ISBN 0-262-69191-4Google Scholar
  43. Sjöstedt, L.: A conceptual framework for analyzing policy-maker’s and industry roles. In: Piet, R., Roger, (eds.) Barriers to Sustainable Transport. Tylor and Francis Group, London (2004)Google Scholar
  44. Sonntag, H.: Entwicklung eines wirtschaftsverkehrsmodells für städte. In: Berichte der Bundesanstalt für Straßenwesen, Verkehrstechnik (1996)Google Scholar
  45. Stiglitz, J.E.: On the economic role of the state. In: Heertje, A. (ed.) The Economic Role of the State, Oxford University Press, Cambridge (1990)Google Scholar
  46. Tavasszy, L.A.: Freight modelling—an overview of international experience’s. Paper presented at the TRB conference on freight demand modelling (2006)Google Scholar
  47. Tavasszy, L., Smeenk, B., Ruijgrok, C.: A DSS for modelling logistic chains in freight transport policy analysis. Int. Trans. Oper. Res. 5, 47–459 (1998)CrossRefGoogle Scholar
  48. Wang, Q., Holguín-Veras, J.: Tour-based entropy maximization formulations of urban freight demand. Paper presented at TRB conference (2009)Google Scholar
  49. Wardrop, J.G.: Some theoretical aspects of road traffic research. In: Proceedings of the Institution of Civil Engineering (Part II), London (1952)Google Scholar
  50. Wasserman, S., Faust, K.: Social network Analysis: Methods and Applications. Cambridge University Press, New York (2008)Google Scholar
  51. Weidlich, W.: Sociodynamics: A Systematic Approach to Mathematical Modeling in the Social Science. Harwood Academic Publishers, Amsterdam (2000). ISBN 90-5823-049-XGoogle Scholar
  52. Wilson, A.G.: Entropy in Urban and Regional Modeling. Pion Limited, London (1970)Google Scholar
  53. Wisetjindawat, W., Sano K., Matsumoto, S., Raothanachonkun, P.: Micro-simulation model for modelling freight agents interactions in urban freight movement. Paper presented at the 86th annual meeting of Transportation Research Board, Washington DC (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  1. 1.Institute for Economic Policy Research (IWW)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institue of Traffic and Transport (IfV)Technical University DarmstadtDarmstadtGermany

Personalised recommendations